

Sofismo AG, Haldenweg 1, CH-5702 Niederlenz, Tel. 076 317 66 74, www.sofismo.ch

FORMAL SOFTWARE ENGINEERING

Formal software engineering starts with formal requirements engineering. Nowadays, this is
achieved on the one hand with formal process definitions and on the other hand with do-
main-specific modelling (DSM) at all abstraction levels down to the individual artefact. The
basic idea behind formal requirements engineering with DSM is to provide every domain
expert (technical as well as business) with a custom-made modelling or specification lan-
guage which he uses to define the desired functionality in the domain he is responsible for.
These languages are modular by design and completely independent of implementation
technology. They constitute the foundation for automated transformations into a large vari-
ety of derived artefacts such as documentation, scripts, configuration parameters and – of
course – program code. With DSM the requirements engineering process reaches unprece-
dented levels of productivity and reproducibility. In fact, the DSM methodology could have a
major influence on the survival of software development in high-wage countries like
Switzerland and Germany.

Summary of the methodology called “Domain-Specific Modelling”

Domain-specific modelling (DSM) originated in a discipline called “Product Line Engineer-
ing” which is more than 10 years old. It is based on a complete separation of the concerns
„specification“ (aka: requirements engineering) and “implementation”.

Requirements Engineering

 The first step towards formal requirements engineering is a domain analysis resulting in
the modularisation of the problem description. An interview process focussing on the
owners of deep domain knowledge and structured by a dozen pre-defined questions is
used to divide the problem domain into a set of small sub-domains.

 Each sub-domain is then modelled with a domain-specific modelling language (DSML).
Such a language is defined by the concepts (aka: abstractions) that domain experts
use to describe requirements with respect to a particular domain. The higher the level
of abstraction of a DSML, the better it allows users to express complex requirements in
compact models that are easily understood by other domain experts.

 Subsequently, users of a DSML agree on one (or more) notation(s) that represent(s)
the underlying concepts. As far as possible, these notations should reflect tried and
true nomenclatures and symbols that domain experts have been using in traditional
specification documents. In a large organisation it is not uncommon to find several no-
tations (so-called jargons) for a single DSML. Notations can be textual or graphical and
are usually embedded in universal editing frameworks (e.g. Xtext for textual notations)
that support the comfortable and efficient manipulation of model instances. Thus, users
neither need to use unknown general-purpose tools nor do they need to express them-
selves in unfamiliar languages such as UML.

Sofismo AG, Haldenweg 1, CH-5702 Niederlenz, Tel. 076 317 66 74, www.sofismo.ch

 The resulting specification is a set of model instances that is complete, unambiguous
and free of redundancies. All changes are modelled only once and automatically pro-
pagated throughout all the derived artefacts.

Implementation

In principle, a specification defined with DSM can be implemented with traditional method-
ologies. However, since the specifications are defined in a formal language, the transforma-
tion to fully functional applications can easily be automated.

 All the domain-specific modelling languages (DSML) are implemented via a reference
application containing at least one instance of each language concept used in the
DSMLs. This implementation is done by hand with the technologies and products that
are currently used by the organisation. The resulting implementation (source code,
configuration files etc.) is then partitioned into a set of parameterized implementation
templates. These templates represent a generalised mapping function between domain
terminology and implementation technology. The implementation may contain an arbi-
trary mix of new and old technologies as well as commonly used off-the-shelf products
or custom-made frameworks.

 Once all business and technical sub-domains have been mapped onto the relevant im-
plementation technologies, any model instance can automatically be translated into
working software via a model-driven generator that assembles the corresponding set of
implementation templates (software factory). Such a development process leads to un-
precedented levels of agility and productivity, and reduces the total cost of ownership of
bespoke software systems dramatically.

Advantages of Domain-Specific Modelling (DSM)
(from the point of view of requirements engineering)

Domain-specific modelling is applicable to any task where complex decisions have to be
documented in a reproducible manner. For an IT-development organisation the following
advantages are relevant:

 Since DSM is based on a set of small specification tools defined by the users them-
selves, any domain expert can participate directly in the requirements-engineering ac-
tivity.

 A given problem can be partitioned into small sub-problems along the structure of the
underlying organisation.

 Multiple specification artefacts such as diagrams, concepts, messages, drawings, mod-
els, etc. can be synchronised to form a consistent specification for subsequent imple-
mentations.

 Due to its modular structure, DSM can be introduced in small steps along the structures
of an organisation. Roll-out into production is achievable incrementally, without any big-
bang introduction of new tools across the entire organisation.

 At any stage of the introduction of DSM, the organisation can continue with more tradi-
tional approaches and still benefit from the results already achieved.

 The whole specification process is technology-independent. Specifications created with
DSM can be implemented on any technology.

 All the tools needed for DSM, can be found in the Open-Source community. The latest
releases of Eclipse contain a very good set of such tools.

 The costs for the development and the maintenance of bespoke software systems drop
by at least 30%.

 DSM brings 100% traceability to the development of software systems and a
nearly perfect alignment of business and IT.

 DSM makes the core know-how of business entities explicit and independent of
technology.

