
FAST product-line architecture process

Maarit Harsu
Software Systems Laboratory

Tampere University of Technology
P.O. Box 553, 33101 Tampere

e-mail:firstname.lastname at tut.fi

Contents

1 Introduction 3

2 Overview of FAST 4
2.1 Roles . 4
2.2 Artifacts . 6
2.3 Activities . 6

3 Principles of FAST 10
3.1 Assumptions . 10
3.2 Ideas and methods . 10
3.3 Focusing the key ideas . 11

4 Domain qualification 14

5 Domain engineering 17
5.1 Domain analysis . 18

5.1.1 Commonality analysis 19
5.1.2 Application modeling language 20

5.2 Domain implementation . 21

6 Application engineering 22

7 PASTA model 25
7.1 Elements of PASTA model . 25
7.2 State machines . 26
7.3 Describing PASTA model . 27

1

7.4 Creating PASTA model . 31

8 Mobile Terminal Example 33
8.1 Overview of mobile terminals 33
8.2 Domain qualification . 33
8.3 Domain engineering . 35
8.4 Application engineering . 36
8.5 Conclusions . 37

9 Conclusions 39

References 41

2

1 Introduction

This report gives an overview of FAST (Family-Oriented Abstraction, Specifica-
tion, and Translation) process. It has been introduced at AT&T by David Weiss
and further developed at Lucent Technologies Bell Laboratories. The report is
mainly based on the book cornerning FAST [WL99]. In addition, there are other
publications about FAST [ADD+00, ADH+00, CHW98].

FAST applies product-line architecture principles into software engineering
process. Thus, a common platform is specified to a family of software products.
The platform is based on the similiraties between several products close to each
other. The variabilities among the members of a product family can be imple-
mented with different variation techniques such as parametrization or conditional
compilation. (A more precise representation about variability in product-line ar-
chitectures can be found, for example, in [Myl02].) The purpose of FAST is to
make software engineering process more efficient by reducing multiple work, by
decreasing production costs, and by shortening time-to-market.

FAST process can be applied in a consistent and disciplined way. This is called
PASTA (Process and Artifact State Transition Abstraction)model. PASTA model
provides a path to follow during FAST process. It determinesa set of steps that
can succeed the current step. Thus, it gives precise instructions to follow, but still
supports individual choises to make during the process. Thepurpose of PASTA is
to make the software engineering process easy to iterate andreuse in future pro-
cesses.

The purpose of this report is to introduce FAST process and toshow how
FAST can be applied in industrial companies. As an example ofapplying FAST,
mobile terminals are considered. The example presents how FAST suits in devel-
oping different terminals that have variant properties andrestrictions.

This report proceeds as follows. Section 2 gives an overviewabout FAST
process, and Section 3 considers the principles behing FAST. Next three sections
describe the activities of FAST: Section 4 concentrates on domain qualification,
Section 5 on domain engineering, and Section 6 on application engineering. Sec-
tion 7 introduces PASTA model, and Section 8 depicts an example of applying
FAST process. Finally, Section 9 concludes the topic by comparing FAST to
other software engineering processes.

3

2 Overview of FAST

FAST (Family-Oriented Abstraction, Specification, and Translation) is a devel-
opment process for producing software in a family-orientedway. It separates
product-line engineering process into two main parts. One step concentrates on
providing the core assets including the environment for implementing each prod-
uct. The other step utilizes the environment in the production of different software
products belonging to the family.

Software engineering in an efficient way is usually difficult. On one hand,
careful engineering in software process is essential to be able to meet the cus-
tomer requirements. Thus, software products should be reliable and easy to use
and maintain. On the other hand, markets and competitors require rapid produc-
tion of software. These two requirements, rapid productionand careful engineer-
ing are difficult to achieve at the same time. However, product-line engineering
via FAST tries to resolve the dilemma and to achieve both the goals.

FAST process can be divided into the following subprocesses(shown in Figure
1):

• domain qualification to identify families worthy of investment,

• domain engineering to invest in facilities for producing family members,

• application engineering to use those facilities to producefamily members
rapidly.

These subprocesses are considered in more detail in Sections 4, 5, and 6.

Besides the division into subprocesses, FAST distinguishes between activities,
artifacts, and roles. Each subprocess (shown in Figure 1) consists of different ac-
tivities, produces different artifacts, and are performedby people acting in differ-
ent roles. However, these two divisions are not totally separated. FAST activities
actually comprises the aforementioned subprocesses.

This section considers the division into roles, artifacts,and activities. Each
item of the division is described in an own subsection.

2.1 Roles

When adopting FAST, the organization should have two different groups of en-
gineers: one for domain engineering and the other for application engineering.

4

Qualify Domain

Engineer Domain

Analyze Domain

Implement Domain

Application Engineering

Environment

Engineer Application

Model Application

Produce Application

Deliver and Support Application

Applications

Ite
ra

te
Ite

ra
te

F
ee

db
ac

k

Figure 1: FAST process pattern [WL99]

5

Domain engineers take care of the evolution of the family andcontrol that the in-
vestment in the family stays paying. Application engineersproduce family mem-
bers. They are in contact with customers to be able to satisfytheir requirements.

Project Manager

Domain Manager

Environment Engineer

Domain Engineer

Application Manager

Application Producer

Application Engineer

System Maintainer/Supporter

Figure 2: FAST role hierarchy [WL99]

FAST roles are shown in Figure 2. The roles are arranged into ahierarchy that
can be a basis for an organizational hierarchy.

2.2 Artifacts

Like roles, also artifacts are presented as a hierarchy (seeFigure 3). Each artifact
consists of the subartifacts below it. For example, an application consists of an
application model, application documentation, and application code. Note that
there are a connection between the Figures 2 and 3. Persons responsible of the
domain part produce environment artifacts, while application persons take care of
artifacts concerning application.

Entry and exit conditions used in PASTA model (considered inSection 7) are
defined in terms of artifacts. As an example of such a condition, the design of an
application modeling language is not possible until commonality analysis report
has been reviewed. However, these conditions are not shown in Figure 3.

2.3 Activities

Like roles and artifacts, also activities are shown as a hierarchy in Figure 4. Note
that many activities and artifacts that are part of FAST process can also belong to

6

Family Artifact

Environment

Domain Model

Economic Model
Commonality Analysis

Decision Model
Family Design

Composition Mapping

Application Modeling Language

Toolset Design

Application Engineering Process

Domain Implementation

Library

Generation Tools
Analysis Tools

Documentation
Application

Application Model

Application Documentation

Application Code

Figure 3: FAST artifact hierarchy [WL99]

7

other software development processes. However, FAST also contains parts that
are unique to this particular process. One of such parts is the design of the family.

FAST
Qualify Domain

Engineer Domain

Analyze Domain

Define Decision Model
Analyze Commonality

Design Domain

Design Application Modeling Language

Create Standard Application Engineering Process

Design Application Engineering Environment

Implement Domain

Implement Application Engineering Environment

Document Application Engineering Environment

Engineer Application

Model Application

Produce Application

Provide Delivery and Operation Support

Manage Project

Change Family

Figure 4: FAST activity hierarchy [WL99]

Some activities may proceed concurrently while some othersmay require a
particular order. For example, domain engineering and application engineering
can be performed in parallel. Domain engineers are able to refine parts of appli-
cation engineering environment at the same time when application engineers are
using other parts of it. PASTA model (described in Section 7)specifies the order
of FAST activities more precisely.

Figure 1 depicts the three main activities that will be considered in the sequel
of this report in more detail. However, Figure 4 shows also two additional ac-
tivities: managing a project and changing a family. Projectmanagement means
managing the work concerning identification and satisfaction of customer require-
ments. Management is based on application engineering environment. It includes

8

normal management tasks such as scheduling, allocating, and monitoring. Chang-
ing a family means controlling and managing the evolution ofthe family. It in-
cludes both allowing changes to the family members and making the generation
of the members easier and more efficient. For both of these additional activities,
PASTA model provides no detailed guides. Instead, each organization can apply
their own policies in these activities.

Together the three hierarchies (see Figures 2, 3, and 4) clarify what people
acting in different roles must do, what they must produce, and when they must
produce it. There is an evident relationship between the hierarchies. For example,
a domain engineer is responsible for domain engineering andproduces a domain
model.

Note that the figures show some levels of details for each item. However, each
item could be viewed in more or less detail when necessary.

9

3 Principles of FAST

This section introduces the assumptions behind FAST and theideas and methods
FAST relies on. Finally, the most important ideas are considered in more detail.

3.1 Assumptions

FAST is based on three assumptions or hypotheses listed below:

• redevelopment hypothesis,

• oracle hypothesis,

• organizational hypothesis.

According to the redevelopment hypothesis, software development is very of-
ten redevelopment. In many cases, it consists of creating new variations on ex-
isting software systems. Usually, there are more similarities than differences be-
tween variations.

According to the oracle hypothesis, it is possible to predict the changes that
are likely to concern a software system. Future changes can be derived from ear-
lier changes. For example, software engineers familiar with telephone switches
can have the experience that different customers will want to use different billing
algorithms.

The organizational hypothesis concerns both software and software develop-
ment organization. Each of them can be organized to take intoaccount of pre-
dicted changes. Predicted changes can be made independently of other type of
changes. The purpose is to make predicted changes refer onlyto a minimal subset
of system modules. For example, software for telephone switches can be designed
such that billing algorithms can be changed independently of the other system.

Together these assumptions suggest that it is important anduseful to find a
family among similar programs. The commonalities between several programs
reveal a family, while their variabilities show the boundaries of the family.

3.2 Ideas and methods

There is a variety of ideas and methods concerning software engineering. FAST
is based on some of the most succesfull ideas that are listed below:

10

• predecting expected changes to a system over its lifetime,

• separating concerns,

• designing for change using abstraction and information hiding,

• formally specifying and formally modeling systems,

• creating application modeling languages for specifying family members,

• composing software from adaptable, reusable components,

• designing process and product concurrently,

• building compiler compilers,

• using template-based reuse,

• restricting variability to gain efficiency.

FAST integrates the above ideas and methods into a process todevelop tools
and assets that are applied to produce the members of a family. The first three
ideas are key to FAST, and thus, they are considered in more detail in the follow-
ing subsection.

3.3 Focusing the key ideas

Abstraction is related to variability. With abstraction, it is possible to provide
several variant ways to implement a task. Such a task can be, for example, com-
munication with a device. The decision about the communication way can be
hidden by the abstraction. The abstraction provides an interface to the users to
access the services, but conceals the details of how to control a device.

Figure 5 shows how abstractions are used in the FAST process.Domain en-
gineers create abstractions to be used in designing the application modeling lan-
guage and in designing the family for the domain. Abstractions can be used to
create a library consisting of adaptable components. Thesecomponents can be
exploited in generating family members.

Information hiding uses abstractions to conceal those decisions that are most
likely to change. An information hiding module provides an abstract interface via
which users can refer to the services of the module. The abstract interface sep-
arates the concern of which services the module offers from the concern of how

11

Domain

Engineer

Abstractions

Family Design

Standard Library

Implementation ... Implementation

Application

Engineer

Application

Modeling

Language

Family Member

Creates

Are used to create

Is used to define

Contains

Are used to design
Uses

Is used to specify

Is a component of

Figure 5: Use of abstractions in the FAST process [WL99]

12

those services are implemented. Information hiding is usedto implement the vari-
abilities of a family.

Separation of concerns [Aks96, HL95] means division of software into parts
according to its different aspects. In addition to the basicalgorithm, a program
may have other concerns such as synchronization or real-time constraints. Sepa-
ration of these concerns is important, because it supports reuse and management of
variabilities between different programs. Separation of concerns has been obeyed
in aspect-oriented programming [KIL+96]. Both of these concepts (separation of
concerns and aspect-oriented programming) are related to product-line architec-
tures, because features needed in different software products can be composed of
different sets of aspects [Gri00].

Change prediction can be based on earlier changes. The change history of a
software family is a starting point for prediction. By examining past changes, it is
possible to find such parts of the software that are most oftenbeen the targets of
changes. These parts are important from two aspects. On one hand, they are the
places where new features are implemented. On the other hand, they are bottle-
necks where the most part of the change effort has been invested.

In addition to the earlier changes, information about change prediction can be
obtained from the people whose business is to predict marketplace and technolog-
ical changes. Moreover, people who have worked a long time with the software
and are experts of the domain can provide valuable information.

13

4 Domain qualification

Domain qualification analyzes a software family from an economic perspective.
It estimates the number and value of family members and the cost to produce them.

According to FAST, investment in domain engineering to find out a product
family pays back in application engineering when producingfamily members (see
large arrows in Figure 7). Figure 6 depicts this assumption.It shows two lines
describing two situations. LineA corresponds the situation with no domain en-
gineering. In this case, the cost of producing a new member ofthe family is
constant, denoted byCT . (If the cost of different products variates,CT can be
considered the average cost over the products of the family.) In each case, the cost
of producingN family members isN ∗ CT .

Line B shows the situation with domain engineering. LetI be the cost of
domain engineering. After this investment, producing a family member is more
efficient, denoted byCF . In this case, the cost of producingN family members
is I + N ∗ CF . In order to get the domain engineering profitable,CF should be
less thanCT . If this holds, saving per family member (without considering I) is
CT − CF . For N family members, saving isN ∗ (CT − CF). To make domain
engineering paying,N should be large enough such thatI < N ∗ (CT −CF). For
example, in Figure 6, payback occurs after producing three family members.

The lines shown in Figure 6 are different for different domains. For some
product families, investment in domain engineering provides greater degree of
automation in the production of family members. Thus, in different domains, the
payback point may occur after producing different amount offamily members.

Besides variation in different domains, automation variesin different phases
in application engineering. For example, a part of application engineering con-
sists of interaction with the customers to determine the requirements for a family
member. These parts cannot be automated. However, some other phases of appli-
cation engineering enable automation. Moreover, even achieving little automation
is paying because careful domain engineering makes the domain more structured
to accomodate changes.

Domain engineering still has a risk to failure. It is possible that the investment
does not provide better adjustment to changes than any othersoftware develop-
ment technique. However, in unsecure situations, investment can be increased
in several steps. The ability to predict changes can be learnt by experience, and
change predictions are based on earlier changes. First witha little experience, it is

14

1 2 3 4

Number of Family Members

CT

2CT

3CT

4CT

C
um

ul
at

iv
e

C
os

t

Paypack Point

(A) Without Domain Engineering

(B) With Domain Engineering

Figure 6: Cost of producing family members [WL99]

reasonable to put only a low investment on the production facilities for a family,
and see how well the predictions come true. When confidence onthe prediction
ability grows, it is possible to return along the feedback loop in Figure 7, and in-
crease the investment in the production facilities. In thisway, the system becomes
more robust even to unpredicted changes.

15

Domain Engineering:

Define family and develop

production facility

Application Engineering
Environment:

Application Modeling Language

+

Tools

+

Application Engineering Process

Application Engineering:

Produce family members

Applications

F
ee

db
ac

k

Investment

Payback

Figure 7: FAST process with investment and payback [WL99]

16

General Needs of

Business Line

Analyze Domain
Feedback from

Application

Engineering

Feedback from

Customers

Domain

Model

Implement Domain

Application

Engineering

Environment

Application

Engineering

Process

Application

Engineering

Figure 8: Domain engineering process [WL99]

5 Domain engineering

Domain engineering studies how the products of the same family share the com-
mon basis and how they differ from each other [ADH+00]. In addition, domain
engineering develops and acquires the core assets of the product line [BFG+00].

Domain engineering can be divided into domain analysis and domain imple-
mentation (shown in Figures 1, 4, and 8). The result of domainanalysis is domain
model (compare Figures 3 and 4) which also acts as a basis for domain implemen-
tation. This can be seen in Figure 8.

17

5.1 Domain analysis

Domain analysis provides different approaches. It can concentrate on describing
what is inside the domain, what is the boundary of the domain,or what is outside
the domain [Sch00]. The first case describes the items that constitute the domain,
or identifies other domains that together form the actual domain (domains can
have sub-domains). The second case describes the rules of inclusion and exclu-
sion. In addition, structure and context diagrams can be produced both to describe
the boundary of the domain and to show the relation of the domain to the outside.

The purpose of domain analysis is to produce a domain model. In FAST con-
text, domain model means a specification for the applicationengineering envi-
ronment. In more general, domain model is a precise representation for spec-
ification and implementation concepts [PA91]. It includes concepts concerning
system specification, plans to map specification into code, and rationales for the
specification concepts, and their relations to the implementation plans. Thus, do-
main model captures common knowledge about the domain and guides reusing
the components of the domain.

FAST process divides domain analysis into subtasks (as has been done in Fig-
ure 4). Similarly, the artifacts produced during domain analysis (i.e. domain
model) can be divided further (see Figure 3). One of these artifacts, economic
model, is considered in Section 4. Commonality analysis comprises identification
of both common and variable aspects among family members. (Commonality
analysis is considered in more detail in Subsection 5.1.1.)

The decision model of domain model defines the decisions thatan application
engineer must make to specify and produce a new member of the family. Deci-
sion model also determines the order in which the decisions should be made to
produce an application. These decisions can be, for example, choosing a value for
a parameter described in commonality analysis.

A part of domain model is an application modeling language (AML) that can
be designed either via compositional approach or via compiler approach. (Appli-
cation modeling language is considered in more detail in Subsection 5.1.2.)

The purpose of domain model is to specify an application engineering environ-
ment and a process for using this environment to model and generate applications
(see Figure 8). This specification acts as a basis for the environment to be devel-
oped during domain implementation.

18

5.1.1 Commonality analysis

One task of domain engineering is to consider the similarities and differencies be-
tween the members of the product family. This aspect of domain engineering is
called commonality analysis, although it covers also considering the variabilities.

Commonality analysis is the basis for designing a family (ora domain). It
identifies and makes useful the abstractions that are commonto all family mem-
bers [Wei98]. There are two main sources of abstraction: terminology and com-
monalities. Precise terms concerning product-line architecture make communica-
tion among developers easier and more accurate. As another source of abstraction,
commonalities are actually assumptions that are true for all family members. Be-
sides the commonalities, it is important to consider variabilities among family
members. Variabilities provide a way to prepare for potential changes by pointing
those decisions concerning family members that are likely to alter over the life-
time of the family.

The result of commonality analysis is commonality documentconsisting of
the following sections [ADH+00]:

Overview
describes the domain and its relation to other domains.

Definitions
provide a standard set of technical terms.

Commonalities
consist of a structured list of assumptions that are true forevery member of
the family.

Variabilities
consist of a structured list of assumptions about how familymembers differ.

Parameters of variation
consist of a list of parameters that refine the variabilities, adding a value
range and binding time for each.

Issues
form a record of important decisions and alternatives.

Scenarios
are examples used in describing commonalities and variabilities.

19

Commonality analysis can be used for several purposes [Wei98]. It can be
used in the further phases of the FAST process, for example, in designing a do-
main specific language and then in generating code and documentation from the
language specification for each product. It serves as a basisfor a family architec-
ture and as reference documentation. Commonality analysiscan also be exploited
in reengineering the members of a product family. It can be used as a training aid
for new project members. In addition, a plan for evolution ofthe family can be
derived from commonality analysis.

5.1.2 Application modeling language

Application modeling language (AML) is a key part of domain model. It is called
modeling language because the specifications written in thelanguage should be
models. They should actually be abstractions of applications. The application
engineering environment enables analyzing the specifications written in AML. It
also provides ways to generate code from the model, or in other words, to map the
abstraction into an implementation.

FAST process has two approaches for generating family members from the
AML: compilation and composition. The composition approach creates a modu-
lar design for the family and implements each module as a template. In addition,
a composer is needed to generate family members by composingcompleted tem-
plates. The family specification determines the templates to be used for a particu-
lar family member.

Composition approach requires family design (or domain design) that is com-
mon to all family members and acts as a basis for generating family members. In
addition, composition mapping between the AML and the family design is needed
in generating family members.

Compilation approach requires building a compiler including a parser for the
AML, a semantic analyzer for the parsed form, and a code generator. The gener-
ated code could be high-level (such asC or Java), machine code, or any other.

The decision between the approach depends on the domain. Forsome do-
mains, the compilation approach is more suitable, while in others, the composi-
tion approach may prove to be more natural. In addition, the experience of domain
engineers can be critical. If the domain engineers have no experience in imple-
menting a compiler, that approach could be too complicated.

20

AML is designed and implemented by domain engineerings and used by ap-
plication engineers. However, application engineers neednot know the approach
applied in the AML or other internal decisions made by domainengineers.

5.2 Domain implementation

As the second part of domain engineering, domain implementation develops or
refines an environment that satisfies the domain model. This environment should
also support the application engineering process. If the chosen AML approach is
compositional, it is necessary to implement the family design, composition map-
ping and a composer. In the opposite case, using a compiler approach, it is neces-
sary to implement analysis tools and a compiler.

Domain implementation includes providing the toolset thatforms the applica-
tion engineering environment. This toolset comprises bothgeneration tools and
analysis tools. Generation tools are used to generate code and documentation for
applications. Analysis tools are used to analyze application models to help the
application engineer validate the models. Documentation concerning both kinds
of tools is also produced.

Domain implementation covers creating a library of templates. It is needed in
implementing code and documentation for applications. Additional documenta-
tion is required to understand how to use the application engineering environment.

21

6 Application engineering

Application engineering can be performed parallel with domain engineering. Do-
main engineers can refine parts of the application engineering environment at the
same time when application engineers use other parts of the environment to model
an application.

Application engineers use the production facilities (application engineering
environment) provided by domain engineers to produce applications of a family
quickly. The applications should satisfy customer requirements, and thus, applica-
tion engineers are connected to customers either directly or via other people such
as salespeople or system engineers. Customers may be external or internal of the
organization, and requirements can be established by formal contract or informal
discussion.

Application engineering is an iterative process (see Figure 9). The customer
identifies or refines the requirements for the application. Then the application
engineer represents the requirements as an application model. Actually, she can
provide a number of different models for a family member, andanalyze them in
different ways and refine them several times to be sure that the model corresponds
to the requirements of the customer. According to the application model, the ap-
plication engineer generates a deliverable set of code and documentation. The
customer checks the received application. This may includetesting the applica-
tion and viewing the result of analyses made by the application engineer.

If the customer is not satisfied with the application, the requirements are re-
fined and the whole process starts from the beginning. The activities presented in
Figure 9 terminates when the customer accepts the application or is sufficiently
dissatisfied with the process to stop participation.

Application engineering process produces artifacts presented in Figure 3. Ap-
plication model is created on the basis of the application engineering environment
by using AML. Application engineers use AML to specify and produce family
members. The application engineering environment supports analyzing specifica-
tions written in AML. AML is also needed in generating code from the application
model.

In addition to application model, application engineeringprocess produces
code for the application. The code is generated from the application model by
using generation tools provided by domain engineers. The tools included in the
application engineering environment can also be used in generating documenta-

22

Customer

Requirements

Analyze Requirements
Application

Modeling

Language

Application

Model

Refine/Validate

Model

Generation and

Analysis Tools

Generate Code

and Documentation

Domain

Engineering

Deliverable Code

and Documentation

Customer

Feedback

Figure 9: Application engineering process (simplified from[WL99])

23

tion for the customer about the application.

24

7 PASTA model

To describe FAST process precisely, a special model called PASTA (Process and
Artifact State Transition Abstraction) can be applied [WL99]. PASTA provides a
systematic way to describe software engineering process (particularly FAST pro-
cess). Thus, it supports communication and iteration of theprocess.

Software engineering process can be considered as a sequence of decision
making activities. These decisions concern requirements of the software, pro-
grams implementing the requirements, required propertiessuch as program struc-
ture, interface, and performance. In addition, decisions about how to verify that
the programs meet their requirements are needed. PASTA model guides making
these decisions. It informs of what decisions software engineers can make, when
they can make them, what the results mean, and how the resultsshould be pre-
sented.

Describing FAST process means describing the three aspects: artifacts, activ-
ities, and roles. Application and domain engineers produceseveral artifacts such
as requirements documents, code files, and organization charts. These artifacts
contain the various decisions made. To produce these artifacts, engineers perform
different activities, and play different roles. Describing these aspects produces a
process model.

However, PASTA model or any other formal model cannot describe software
development completely. For example, a total ordeding of the activities is not
provided. PASTA model only shows at different points a set ofactivities that can
proceed next. The engineers make selection among these alternative activities.

7.1 Elements of PASTA model

PASTA model consists of state transitions and their abstractions. It contains the
following elements:

Role
represents responsibility, assignment, authority, or work force. It indicates
who can perform an activity.

Artifact
represents a final or intermediate work products or the information needed
to produce it. It indicates what must be produced.

25

Artifact state
is the condition of the artifact. Artifacts change state according to the ac-
tivities addressed to them. State changes indicate the progress toward com-
pleting the artifact.

Process state
is a set of activities performed in a particular situation. The situation is de-
fined by an entry condition that must be satisfied before the process state
is entered. An exit condition specifies the effect of the process and deter-
mines transition out of the process state. The entry and exitconditions are
specified in terms of artifact states. Process states can be organized into
substates. They indicate what must be done to make progress,when it can
be done, who can do it, and what the criteria are for completing an activity.

Operation
is an activity to be performed on one or more artifacts. Operations form the
lowest level of the process state hierarchy, they are not further organized
into subactivities. Operations indicate what must be done and who can do
it.

Analysis
is an activity that provides information about the state of the process, its
artifacts, and the roles of the participating people. Analyses indicate what
progress has been made, how fast it has been made, what resources have
been used, and what the quality of the artifact is.

Relation
shows relationships among process elements. In addition tobuilt-in rela-
tions between artifacts, activities, and roles, other special relationships may
be needed. For example, a completeness relation says that a design doc-
ument is not complete until the corresponding requirementsdocument is
complete.

7.2 State machines

PASTA model represents decision-making activities as state machines that can
execute in parallel. States correspond to activities performed by people acting in
different roles. This kind of state-based model enables representing concurrency
and backtracking. Although some FAST activities can be performed in parallel,
this does not hold for all activities. In these cases, the order of the activities is
specified with entry and exit conditions. They determine when an activity can

26

begin and what conditions must be true when it terminates.

FAST activities (see Figure 4) correspond state machines. The whole FAST
process is divided into five substate machines: qualify domain, engineer domain,
engineer application, manage project, and change family. States composed of
substates are calledcomposite states, while elementary stateshave no substates.
Elementary process states consist only of operations and analyses.

Like activities, also artifacts can be represented as statemachines. Artifact
states can be, for example, as follows:

Referenced
An artifact has been referenced somewhere in the process. Thus, it is needed
and must be created if it does not exist.

Defined_and_Specified
The contents of the artifact have been defined and specified.

Reviewed
The artifact has passed a review and has been accepted.

To identify clearly the names of states, the words of them arewritten in differ-
ent style and connected with underscores. For example,Defined_and_Specifiedis
the name of an artifact state. Table 1 shows some sample decisions, corresponding
artifacts, and artifact states.

7.3 Describing PASTA model

PASTA uses tree diagrams (Figures 2, 3, and 4), forms (Table 2), and state tran-
sition diagrams (Figure 10) to describe process elements. Forms, represented as
tables, define process states, artifacts, and their states.Process state forms include
state entry and exit conditions, state transitions, and theoperations and analyses
that can be performed in the states. Transition diagrams show process state ma-
chines and artifact state machines.

Table 2 is the process state definition form for the process state calledQual-
ify_Domain. Figure 10 shows the corresponding process state transition diagram
with subprocess states. For example, the entry to substateGather_Datais a func-
tion of the artifactEconomic_Modelwhen its artifact state isReferenced.

27

Decision Artifact States
Is the family economi-
cally viable?

Economic
model

Referenced
Started
Reviewed

What are the members
of the family?

Commonality
analysis

Referenced
Standard_Termilogy_Established
Commonalities_Established
Variabilities_Established
Variabilities_Parametrized
Reviewed

How should fam-
ily members be
described?

Application
modeling
language

Commonality_Analysis_Reviewed
Language_Type_Identified
Language_Specified

How should the soft-
ware for the family be
organized to take ad-
vantage of both com-
monality and predicted
variability in family
members?

Family design Referenced
Defined_and_Specified
Reviewed

What is the implemen-
tation of a component
of the family design?

Code for the
component

Referenced
Designed
Reviewed
Tested

What progress toward
engineering a domain
has been made?

Report of mile-
stones achieved
and resources
used

Referenced
Delivered

Table 1: Sample decisions, corresponding artifacts, and artifact states [WL99]

28

Name Qualify_Domain
Synopsis Domain qualification producesEconomic_Modeldeter-

mining the economic viability for a domain. A domain
is economically viable if the investment in domain engi-
neering is more than repaid by the value obtained from it.

Main role Domain_Engineer, Domain_Manager
Entrance Condition state-of(Economic_Model)=Referencedor

state-of(Change_Report)=Domain_Change_Authorized
Artifact list Economic_Model
Information artifacts Environment

OPERATION LIST

Name Gather_Data
Synopsis Gather the data needed to decide whether a domain exists

and is worth engineering.

Name Analyze_Data
Synopsis Create anEconomic_Modelfor the domain that can be

used to evaluate the cost and time savings from applying
domain engineering.

Name Reject
Synopsis TheEconomic_Modelhas been created and evaluated for

the domain. It is not worth investing in the domain.

Name Accept
Synopsis Based on the evaluation of theEconomic_Modelfor the

domain, it is worth investing in the domain.
Exit condition state-of(Economic_Model)=Reviewed
Informal specifica-
tion

Gather data on the expected family members, current cost
and time to develop the members. Characterize current
process to develop family members and identify potential
savings in time and cost from automation. Create an eco-
nomic model that shows the difference in cost and time
between current process and domain engineering. Use the
model to decide whether the investment in domain engi-
neering is worth the savings in cost and time.

Table 2: Process state definition form forQualify_Domain[WL99]

29

Gather_Data

Analyze_Data

Reject Accept

Economic_Model[Referenced]

Economic_Model[Started]

Economic_Model[Reviewed] Economic_Model[Reviewed]

Family_Artifact[Domain_Rejected] Family_Artifact[Domain_Accepted]

Figure 10: Process state transition diagram forQualify_Domain[WL99]

30

7.4 Creating PASTA model

PASTA model need not be created as a single step. It is possible to create first a
simple version of the artifact, activity, and role trees andsupplement them later.
After iterating and refining each tree, a short synopsis is created for each tree node.
These synopses act as a basis for the definition forms for artifacts, process states,
operations, analyses, and roles. During the creation process, the consistency be-
tween different descriptions are checked continuously.

When considering the creation of the PASTA model, necessarysteps in more
detail are listed below:

Decide which artifacts are to be created, modified, and used during the pro-
cess.

Artifacts can be organized into subartifacts. For example,a document can
be organized into sections, and code into modules. Artifacts and their sub-
artifacts are represented as a tree hierarchy. Each artifact in the tree is de-
scribed in detail using a table.

Determine the states of the artifacts and the transition among them.
A state machine diagram is constructed for each artifact.

Determine the states of the process.
States can be organized into substates. For example, a design state could
consists of a modular design state and an interface design state. States and
their substates are represented as a tree hierarchy. Each state in the tree
is described in detail using a table and the corresponding state machine
diagram. They also describe sequencing and transitions among the states,
which is not shown in the tree.

Determine the operations and analyses that can be performedin each state
of the process.

Each operation and analysis is described using a table.

Determine the roles of the people participating the process.
Roles are organized in a tree hierarchy. Each role in the treeis described
using a table.

Determine the relationships among the artifacts.
Each relationship is described using a table.

The above steps are meant to guide process modeling. In each time, although
with the same participating people, the process will most evidently be different.

31

PASTA provides flexibility in creating and performing the process in different
ways. Each aspect (such as an artifact, activity, or role) can be described in any
amount of details. When the trust in the process and the willingness to invest more
effort in process modeling increases, the process can be described in more detail.

32

8 Mobile Terminal Example

This section shows how FAST process could be applied in a domain concerning
mobile terminals. The domain in question is first introduced. After that, each
phase of FAST process is considered and applied in this particular domain. Fig-
ure 1 depicts FAST process in general cases. Figure 11 (derived from Figure 1)
shows FAST process in the mobile terminal domain.

8.1 Overview of mobile terminals

The chosen example is derived from [Moi01] concerning a software platform for
mobile terminals. Mobile applications or wireless applications can be used in a
wireless terminal like a mobile phone or a PDA (personal digital assistant). Ter-
minals typically communicate wirelessly with other devices, for example other
terminals or servers. A wireless application is usually executed partly outside the
terminal. These new kinds of terminals are small but still effective. They are
provided with colour displays and powerful processors. They can show moving
video pictures, 3D graphics, and effective sounds.

Application programming for mobile terminals is differentfrom conventional
program development. Memory requirements are typically more strict. Displays
vary in their size and shape from one terminal to another. Keyboard and button
equipments differ from each other. These differences require application cus-
tomization according to the properties of each device.

Mobile terminals typically have an open operating system which allow anyone
(in addition to the producer of the device) to develop applications referring to the
features of the operating system. Thus, the applications can be made powerful
because they can directly use the properties of the underlying device. However,
such applications require large modifications when portingthem to other devices.

8.2 Domain qualification

Domain qualification considers how useful and profitable it is to follow product-
line convention in software engineering process (see Figure 11). In the mobile
example, turning into a common programming platform makes the development
of different mobile applications easier. The main purpose is to make programming
tasks consistent with each other such that they do not dependon the underlying
device. However, simplification of the application development can be seen as a

33

Qualify Mobile Domain

Engineer Mobile Domain

Analyze Mobile Domain

Implement Mobile Domain

Programming model

Engineer Mobile Application

Model Mobile Application

Produce Mobile Application

Deliver and Support Mobile Application

Mobile Applications

Ite
ra

te
Ite

ra
te

F
ee

db
ac

k

Figure 11: FAST process for mobile domain

34

way to reach also financial advantage.

The common programming platform tries to solve the conflict between the
following aims. On one hand, it is preferred to take advantage of the special
properties of each terminal. On the other hand, it is desiredthat the same appli-
cations without any modifications can be run in different terminals. The common
programming platform provides a layer above the detailed properties of different
terminals. However, it enables customization of the application for each specific
terminal.

8.3 Domain engineering

Domain engineering can be divided into domain analysis and domain implementa-
tion (see Figure 11). Domain analysis comprises commonality analysis which, in
the particular mobile example, covers the identification ofdifferent operating sys-
tems. In this example, supported operating systems are PocketPC, EPOC, Linux,
Palm OS, and Windows. Terminals may have variant propertiessuch as memory
resources and data communication. Supported devices are, for example, PDAs
and smart phones.

Besides commonality analysis, domain analysis covers family design. In the
mobile example, applications are typically based on client/server architecture.
Terminals act as clients using the services of servers. An application can be ex-
ecuted both in the terminal and in the server. The programmerof an application
can decide which part of the code is run in the terminal and which part is executed
by a server. This division may depend on the restrictions of different devices. For
example, it is possible to give for an ineffective device more server time than for
a more effective one.

The other part of domain engineering is domain implementation which pro-
vides tools and an environment for developing applications. In the mobile ex-
ample, the environment is divided into following two parts.Development library
supports application development, whileservice platformis meant for operators
and service providers.

The development library has a layered architecture consisting of three layers:
operating system abstraction, system services, and media services. The lowest
level, operating system abstraction acts as an adapter to the services of the ac-
tual operating system. It provides operating system services such as memory
management, file system, threads, and synchronization. System services of the

35

middle level raise the abstraction level of the services by providing useful and
more portable concepts such as network channel and resources. However, the ap-
plications using the services of this level need not care about different terminals
supporting different network channels. Media services of the top level provide
solutions for specific problems. The solutions are customized for each different
terminals. Examples of these services are packaging and unpackaging video pic-
tures.

Domain implementation provides an environment for developing both client
(terminal) and server applications. The purpose of the terminal environment is to
provide a common way to program different terminals. Thus, it should not be nec-
essary to rewrite the program for different terminals. The same purpose concerns
client environment, too. However, there is less variability among the operating
systems than in the terminal environment. When developing aserver, the restric-
tions such as memory requirements are less severe than in thecase of clients. Both
of these environments are as similar as possible to make it easy for the users to
learn the environments.

In addition, domain implementation provides necessary development tools for
compiling, linking, and automatic processing of application data. Tools are also
needed when starting to support new devices.

8.4 Application engineering

The purpose of domain engineering is to produce an application engineering en-
vironment. The environment created for developing mobile applications is in-
troduced in the previous subsection. Using the environmentis called following a
programming model(see Figure 11). The programming model provides a uniform
environment to develop programs for different terminals. Application engineering
uses the programming model to implement mobile applications.

Application engineering can be divided into modeling, producing, and deliv-
ering and supporting applications (see Figure 11). Application modelling con-
centrates on customer requirements. In the mobile example,the most important
requirements are reliability, reactivity, and security. Reliability is important be-
cause the users prefer and require safe applications on which they can rely even in
critical situations. Reliability can be achieved by accurate programming conven-
tions and version control.

Reactivity means that the response time is as low as possible. Response time

36

is low enough if the user cannot notice any delay. Time-consuming services can
be provided as asynchronized services. In such services, requests can be left to
wait for service and immediately continue normal processing. The reply to the
request may take for a while and it will be handled as soon as itcomes. However,
it is essential that the waiting time is not wasted idly.

Security is important because an application in mobile terminals can directly
use the device instructions. Thus, it would also be possibleto remove or read the
user’s personal data or send it to other devices. To be sure about the security of
the system, the user should be able to control the programs tobe loaded in her
terminal.

Producing an application covers the basic programming tasks implemented by
following the programming model.C++ has been chosen as the implementation
language. SpecialC++ classes are used to provide a common interface for dif-
ferent terminals. These interface classes are implementedas abstract classes and
used via inheritance and dynamic binding. They hide the differences between
terminals. For the hiding purpose, macros andC++ templates can be used, too.
Some of the compilers of the devices do not support exceptionhandling. Thus, for
handling exceptions, a specific way imitatingC++ exception handling has been
implemented.

Delivering and supporting a mobile application has its specific characteristics.
Delivering may require different arrangements such as contracts with phone oper-
ators that offer delivering services. In addition, networkconnections are needed.
These characteristics have been considered in the service platform to make the
mobile applications easily available for customers.

The described system with its development library and programming model is
currently in an initial phase. However, as an application example, a multi-player
game has been produced to be able to demonstrate the system. The game has
proved that the system could be successful.

8.5 Conclusions

The described example is not originally processed via FAST.Actually, the exam-
ple is afterwards tried to accommodate to FAST, or tried to outline how FAST
could be applied in this particular situation. However, taking into account the de-
ficiences of the situation, FAST fits to the chosen example surprisingly well. The
subprocesses are rather easy to find even afterwards. However, FAST has not been

37

applied in a detailed way. The purpose was to identify only the main phases of
FAST process.

The example does not provide any explicit application modeling language.
However, the programming model can be considered as an AML. Thus, in this
particular example, AML is a restricted group ofC++ programming concepts.
The restriction is formed according to the restriction of the different terminals.

This example concentrates only on the basic FAST process. FAST artifacts
and roles have not been considered. They are important during FAST, but not so
essential afterwards. PASTA model has not been taken into account, neither. Be-
cause it was not possible to observe the process during processing it, it is difficult
to follow PASTA model. PASTA model provides advice during the process. It is
not meaningful to find the steps and selections afterwards.

38

9 Conclusions

Dividing the product-line engineering process into domainengineering and ap-
plication engineering is not unique to FAST. Instead, thereare several process
models using similar division. However, some of the methodshave first concen-
trated on domain engineering, and they are afterwards extended with application
engineering.

FODA (Feature-Oriented Domain Analysis) [KCH+90] considers the features
of similar applications in a domain. Features are capabilities of the applications
considered from the end-user’s point of view. Features cover both common and
variable aspects among related systems. They are divided into mandatory (or com-
mon), alternative, and optional features. FODA includes different analyses such
as requirements analysis and feature analysis. It producesa domain model cover-
ing the differences between related applications. FODA is currently a part of the
model-based approach of domain engineering [Sof00]. This approach covers both
domain engineering and application engineering. The domain engineering part
consists of domain analysis (FODA), domain design, and domain implementa-
tion. In addition, FODA is further extended into FORM (Feature-Oriented Reuse
Method) [KKLL99] to include also software design and implementation phases.
FORM covers both analysis of domain features and using thesefeatures to de-
velop reusable domain artifacts.

ODM (Organization Domain Modeling) [SCK+96] mainly concentrates on
the domain engineering of legacy systems. However, it can beapplied to the re-
quirements for new systems. ODM is tailorable and configurable, and it can be
integrated with other software engineering technologies.It combines different
artifacts such as requirements, design, code, and processes from several legacy
systems into reusable common assets. ODM is supported by DAGAR (Domain
Architecture-based Generation for Ada Reuse) [KS96]. DAGAR process does not
cover domain modeling. Thus, it applies ODM or other methodsfor this purpose.
Instead, DAGAR process includes activities both for domainengineering and ap-
plication engineering.

RSEB (Reuse-Driven Software Engineering Business) [JGJ97] is a system-
atic, model-driven reuse method. It composes sets of related applications from
sets of reusable components. RSEB uses UML (Unified ModelingLanguage)
[RJB99] to specify application systems, reusable component systems, and layered
architectures. Variabilities between systems are expressed with variation points
and attached variants. FeatuRSEB (Featured RSEB) [GFd98] connects features
(from FODA) with RSEB. Actually, FODA and RSEB have much in common.

39

Both of them are model-driven methods providing several models corresponding
the different view points of the domain. Thus, they are compatible with each other.

PuLSE (Product Line Software Engineering) [BDF+99] divides product line
life cycle into three parts. In the initialization phase, PuLSE is customized to fit
the particular application. Adaptation is affected by the nature of the domain,
the project structure, the organizational context, and thereuse aims. In the sec-
ond phase, product-line infrastructure is constructed. This step includes scop-
ing, modeling, and architecting the product line. In the third phase, the product-
line infrastructure is used to create individual products.This concerns instantiat-
ing the product-line model and architecture. Each of these phases is associated
with product-line infrastructure evolution. Each phase should consider chang-
ing requirements and changing concepts within the domain. PuLSE has several
components. PuLSE-DSSA (PuLSE - Domain-Specific Software Architecture)
[ABFG00], for example, develops a domain specific architecture based on the
product-line model. As other examples, PuLSE-Eco concentrates on economic
scoping, and PuLSE-EM on evolution and management.

As shown, there exist several process models rather similarto FAST. Accord-
ing to these process models, the process division into domain engineering and
application engineering has proved to be a useful convention. Because of the
similarities between the models, accomodating the mobile terminal example (pre-
sented in Section 8) to other process models would probably be very much the
same as adapting it to FAST.

40

References

[ABFG00] Michalis Anastasopoulos, Joachim Bayer, Oliver Flege, and Christina
Gacek. A process for product line architecture creation andevalua-
tion, PuLSE-DSSA–version 2.0. Technical Report IESE-038.00/E,
Fraunhofer Institut Experimentelles Software Engineering, June
2000.

[ADD+00] Mark Ardis, Peter Dudak, Liz Dor, Wen-jenq Leu, Lloyd Nakatani,
Bob Olsen, and Paul Pontrelli. Domain engineered configuration con-
trol. In Patric Donohoe, editor,Software Product Lines, Experience
and Research Directions, pages 479–493. Kluwer Academic Publish-
ers, 2000.

[ADH+00] Mark Ardis, Nigel Daley, Daniel Hoffman, Harvey Siy, andDavid
Weiss. Software product lines: a case study.Software — Practice
and Experience, 30(7):825–847, 2000.

[Aks96] Mehmet Aksit. Separation and composition of concerns in the object-
oriented model.ACM Computing Surveys, 28(4es), 1996.

[BDF+99] Joachim Bayer, Jean-Marc DeBaud, Oliver Flege, Peter Knauber,
Roland Laqua, Dirk Muthig, Klaus Schmid, and Tanya Widen.
PuLSE: A methodology to develop software product lines. InSympo-
sium on Software Reusability (SSR’99), pages 122–131, May 1999.

[BFG+00] John Bergey, Matt Fisher, Brian Gallagher, Lawrence Jones, and
Linda Northrop. Basic concepts of product line practice forthe DoD.
Technical Note CMU/SEI-2000-TN-001, Software Engineering Insti-
tute, Carnegie-Mellon University, 2000.

[CHW98] James Coplien, Daniel Hoffman, and David Weiss. Commonality
and variability in software engineering.IEEE Software, 15(6):37–45,
1998.

[GFd98] Martin L. Griss, John Favaro, and Massimo d’Alessandro. Integrating
feature modeling with the RSEB. InFifth International Conference
on Software Reuse (ICSR’98), pages 76–85, June 1998.

[Gri00] Martin L. Griss. Implementing product-line features by composing
aspects. In Patric Donohoe, editor,Software Product Lines, Expe-
rience and Research Directions, pages 271–288. Kluwer Academic
Publishers, 2000.

41

[HL95] Walter L. Hürsch and Christina Videira Lopes. Separation of con-
cerns. Technical Report NU-CCS-95-03, College of Computer
Science, Northeastern University, Boston, Massachusetts, February
1995.

[JGJ97] Ivar Jacobson, Martin Griss, and Patrik Jonsson.Software Reuse: Ar-
chitecture, Process and Organization for Business Success. Addison-
Wesley, 1997.

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak,
and A. Spencer Peterson. Feature-oriented domain analysis(FODA)
feasibility study. Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie-Mellon University, November 1990.

[KIL +96] Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier,
Cristina Videria Lopes, Chris Maeda, and Anurag Mendhekar.
Aspect-oriented programming.ACM Computing Surveys, 28(4es),
1996.

[KKLL99] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, and Kwandoo Lee. Feature-
oriented engineering of PBX software for adaptability and reuseabil-
ity. Software — Practice and Experience, 29(10):875–896, 1999.

[KS96] Carol Diane Klingler and James Solderitsch. DAGAR: Apro-
cess for domain architecture definition and asset implementation.
In ACM TriAda’96 Conference, December 1996. Available from:
http://source.asset.com/stars/darpa/Papers/ArchPapers.html.

[Moi01] Jussi Moisio. Software platform for mobile terminals (in Finnish).
Master’s thesis, Tampere University of Technology, Software Sys-
tems Laboratory, May 2001.

[Myl02] Tommi Myllymäki. Variability management in software product
lines. Technical Report 30, Institute of Software Systems,Tampere
University of Technology, January 2002.

[PA91] Rubén Prieto-Díaz and Guillermo Arango.Domain Analysis and Soft-
ware System Modeling. IEEE Computer Society Press, 1991.

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch.The Unified
Modeling Language Reference Manual. Addison-Wesley, 1999.

[Sch00] Klaus Schmid. Scoping software product lines. In Patrick Donohoe,
editor,Software Product Lines, Experience and Research Directions,
pages 513–532. Kluwer Academic Publisher, 2000.

42

[SCK+96] Mark Simos, Dick Creps, Carol Klingler, Larry Levine, and Dean
Allemang. Organization domain modeling (ODM) guidebook, ver-
sion 2.0. Technical Report STARS-VC-A025/001/00, Lockheed Mar-
tin Tactical Defence Systems, June 1996.

[Sof00] Software Engineering Institute, Carnegie-MellonUniversity.Domain
Engineering: A Model-Based Approach, January 2000. Available
from: http://www.sei.cmu.edu/domain-engineering/.

[Wei98] David M. Weiss. Commonality analysis: A systematicprocess for
defining families. In Frank van der Linden, editor,Development
and Evolution of Software Architectures for Product Families, vol-
ume 1429 ofLecture Notes in Computer Science, pages 214–222.
Springer, 1998.

[WL99] David M. Weiss and Chi Tau Robert Lai.Software Product-Line En-
gineering: A Family-Based Software Development Process. Addison-
Wesley, 1999.

43

