
Abstraction – the key to Computing?

Jeff Kramer

Department of Computing, Imperial College London
j.kramer@imperial.ac.uk

Why is it that some software engineers and computer scientists are able to
produce clear, elegant designs and programs, while others cannot? Is it purely
a matter of intelligence? Is it possible to improve the skills and abilities of those
less able through further education and training? We explore these questions,
and argue that a sound understanding of abstraction is crucial for computing
professionals.

Background

For over thirty years, I have been involved in teaching and research in computer
science and software engineering. My teaching experience ranges over courses in
programming, distributed systems, distributed algorithms, concurrency and software
design. All these courses require that the students are able to perform problem
solving, conceptualization, modeling and analysis. My experience is that the better
students are clearly able to handle complexity and to produce elegant models and
designs. The same students are also able to cope with the complexities of distributed
algorithms, the applicability of various modeling notations and other subtle issues.

On the other hand, there are a number of students who are not so able. They tend to
find distributed algorithms very difficult, do not appreciate the utility of modelling,
find it difficult to identify what is important in a problem, and produce convoluted
solutions that replicate the problem complexities. Why? What is it that makes the
good students so able? What is lacking in the weaker ones? Is it some aspect of
intelligence? I believe that the key lies in abstraction: the ability to perform abstract
thinking and to exhibit abstraction skills.

The rest of this paper explores this hypothesis and makes recommendations for future
work. We first discuss what abstraction is and its role in computing and other
disciplines. Others, such as Hazzan [5] and Devlin [2] have also discussed abstraction
as a core skill in mathematics and computing. Using findings from cognitive
development, we then explore the factors affecting students’ ability to cope with and
perform abstraction. Next we discuss whether or not abstraction is teachable. Finally
we suggest that steps need to be taken to test abstraction skills as a means of
validating our hypothesis, checking our teaching techniques and even, perhaps,
selecting our students.

2 Jeff Kramer

Abstraction. What is it? Why is it so important?

From the definitions of abstraction [10], we focus on two particularly pertinent
aspects1. The first emphasises the process of removing detail to simplify and focus
attention, based on the definitions:

- the act of withdrawing or removing something, and
- the act or process of leaving out of consideration one or more properties of
a complex object so as to attend to others.

The second emphasises the process of generalisation to identify the common core or
essence, based on the definitions:

- the process of formulating general concepts by abstracting common
properties of instances, and
- a general concept formed by extracting common features from specific
examples.

Fig. 1. Henri Matisse, Naked blue IV, 1952, paper cut outs, Nice (© Succession Henri
Matisse)

Abstraction is widely used in other disciplines such as art and music. For instance, as
shown in Figure 1, Henri Matisse manages to clearly represent the essence of his
subject, a naked woman using only simple lines or cutouts. His representation
removes all detail yet conveys much. In his painting, South Wind, Clear Skies (Red
Fuji), Katsushika Hokusai captures Mount Fuji (Figure 2); an art commentator

1 See Frorer, Hazzan and Manes [3] for an interesting discussion on the Faces of Abstraction.

Abstraction – the key to Computing? 3

(Gabrielle Farran) remarks that he uses a “perfect balance of colour and composition
rendering an abstract form of the mountain to capture its essence”.

Fig. 2. Katsushika Hokusai, 'South Wind, Clear Sky' (Gaifû kaisei) ['Red Fuji'], a
colour woodblock print, Japan, AD 1830-33 (© 2000 The British Museum)

Another example is from jazz, where musicians identify the essential melody or heart
of the particular piece of music, and improvise around that to provide their own
embellishments. One jazz musician provided the following apposite remark, “It is
easy to make something simple sound complex, however it is more difficult to make
something complex sound simple”. This difficulty is a clear example of the challenge
in the application of abstraction in removing extraneous detail.

4 Jeff Kramer

Circa 1928

1933

Fig 3. The London Underground Map – 1928 and the 1933 map by Harry Beck (© Transport
for London)

A wonderful example of the utility of abstraction is provided by the contribution of
Harry Beck to the London Underground map as we now know and love. In 1928, the
map was essentially an overlay of the underground system onto a conventional
geographical map of London (Figure 3). It showed the curves of the train lines and of
the Thames River, and the relative distances between the stations. In 1931, he
produced the first abstract, schematic representation, simplifying the curves to just
horizontal, vertical and diagonal lines and where the distances between stations were
no longer proportional to the geographical distances (see Figure 2, 1933 map). This

Abstraction – the key to Computing? 5

form of simplified representation or abstraction is ideally fit for the purpose of
navigating around the London Underground, is still used today and has been used for
transport systems in numerous other countries. The level of abstraction had to be
carefully selected so as to include only the required details but neglect the
unnecessary: too abstract and the map would not provide sufficient information for
the purpose; too detailed and the map becomes confusing and less comprehensible.
Like any abstraction, it can be misleading if used for other purposes. The underground
map is sometimes misused by tourists who misinterpret it as an actual geographical
map of London. The level, benefit and value of a particular abstraction depend on its
purpose.

Why is abstraction important in Computer Science and Software Engineering?
Software itself is certainly abstract, and the discipline of producing software requires
abstraction skills. Keith Devlin [2] states the case clearly and concisely,” “Once you
realize that computing is all about constructing, manipulating, and reasoning about
abstractions, it becomes clear that an important prerequisite for writing (good)
computer programs is the ability to handle abstractions in a precise manner.” Ghezzi
et al [4] identify abstraction as one of the fundamental principles of software
engineering in order to master complexity. The removal of unnecessary detail is
obvious in requirements engineering and software design. Requirements elicitation
involves identifying the critical aspects of the environment and the required system
while neglecting the irrelevant. Design requires that one avoid unnecessary
implementation constraints. For instance, in compiler design, one often employs an
abstract syntax to focus on the essential features of the language constructs, and
designs the compiler to produce intermediate code for an idealized abstract machine
to retain flexibility and avoid unnecessary machine dependence. The generalization
aspect of abstraction can be clearly seen in programming, with the use of data
abstractions and classes in object oriented programming. Abstract interpretation for
program analysis is another example of generalization, where the concrete program
domain is mapped to an abstract domain to capture the semantics of the computation
for program analysis.

Abstraction skills are essential in the construction of appropriate models, designs and
implementations that are fit for the particular purpose at hand. Abstract thinking is
essential for manipulating and reasoning about abstractions, be they formal models
for analysis or programs in a programming language.

In fact, abstraction is fundamental to mathematics and engineering in general, playing
a critical part in the production of models for analysis and in the production of sound
engineering solutions.

6 Jeff Kramer

What determines our students’ abilities?

Do our students’ powers of abstraction depend on their cognitive development? Can
we improve their abilities and, if so, how? Is it possible to teach abstract thinking and
abstraction skills?

Jean Piaget (1896-1980) provided the foundations for an understanding of the
cognitive development of children from infants to adulthood [6, 9]. Based on case
studies, he derived four stages for development: sensorimotor, pre-operational,
concrete operational and formal operational. The first two stages are from infancy to
early childhood (about the age of seven), where intelligence is roughly indicated by
motor activity and then by language and early symbol manipulation respectively. The
third is the concrete operational stage, from about seven to twelve, where intelligence
is roughly indicated by a grasp of conservation of matter, of causality and an ability
for classification of concrete objects. The fourth is the formal operational stage, from
around twelve to adulthood, where individuals indicate an ability to think abstractly,
systematically and hypothetically, and to use symbols related to abstract concepts.
This is the crucial stage at which individuals are capable of thinking abstractly and
scientifically.

Although there is some criticism concerning the way Piaget conducted his research
and derived his theory, there is general support for his underlying ideas. Further
studies and experimental evidence supports Piaget’s hypothesis that children progress
through the first three stages of development; however it appears that not all
adolescents progress to the formal operations stage as they mature. Biological
development may be a prerequisite, but tests conducted on adult populations indicate
that only 30 to 35% of adults achieve the formal operations stage [7], and that
particular environmental conditions and training may be required for adolescents and
adults to achieve this stage.

Is Abstraction teachable?

Although the low attainment figures for Piaget’s formal operations stage may be
rather disappointing, there does seem to be some hope of improving students’
achievement by creating the right educational environment. For instance, for
adolescents Huitt and Hummel [6] (based on Woolfolk & McCune-Nicolich [11])
recommend using teaching techniques such as giving students the opportunity to
explore many hypothetical questions - encouraging students to explain how they solve
problems - and teaching broad concepts in preference to just facts.

What about course content and curricula? At Imperial College, the four year MEng
degree in Computing offers over sixty different course modules, including a number
of optional specialization courses in the third and fourth years. None of these courses
is a course on abstraction, yet all rely on or utilize abstraction to explain, model,
specify, reason or solve problems! This seems to confirm that abstraction is an

Abstraction – the key to Computing? 7

essential aspect of Computing, but that it has to be taught indirectly, through other
topics.

Our anecdotal experience is that mathematics is an excellent vehicle for teaching
abstract thinking. In our early years, when there was less mathematical content in our
curricula for undergraduate courses, the students appeared to lack abstraction skills
and were less able to deal with complex problems. Keith Devlin confirms this
experience by remarking, “The main benefit of learning and doing mathematics is not
the specific content; rather it’s the fact that it develops the ability to reason precisely
and analytically about formally defined abstract structures” [2]. More detailed
supporting arguments are provided by Keith Devlin and others in a special section of
articles in Communications of the ACM [2]. The case in favour of a mathematical
treatment of computing and the inclusion of mathematical topics in the curriculum is
strong. However, in computing, it is crucial they are not only capable of manipulating
symbolic and numerical formalisms, but also skilled at moving from an informal and
complicated real world to a simplified abstract model.

The ACM/IEEE Computing Curricula: Software Engineering Volume 2004 [1] gives
some recognition of the importance of abstraction by including mention of aspects
such as encapsulation, levels of abstraction, generalization and class abstractions;
however, it is software modeling and analysis that receives major attention.

Formal modelling and analysis is a powerful means for practising abstract thinking
and consolidating students’ ability to apply abstraction. Modelling is the most
important engineering technique; models help us to understand and analyse large and
complex problems. Since models are a simplification of reality intended to promote
understanding and reasoning, students must exercise all their abstraction skills to
construct models that are fit for purpose. They must also be capable of mapping
between reality and the abstraction, so as to appreciate the limitations of the
abstraction and to interpret the implications of model analysis. Student motivation can
be enhanced by presenting the mathematics of the modelling formalism in a problem-
oriented manner, and can benefit by the provision of tool support (such as model
checking) for reasoning and analysis.

My personal experience teaching model building and analysis as part of a course on
Concurrency [8] has been very encouraging. Given a model, students find them very
helpful in clarifying the important aspects of the problem and in reasoning about its
properties and behaviour. However, some still seem to find it extremely difficult to
construct the models themselves, ab initio. It is not enough to think about what they
want to model, they need to think about how (the purpose) they are going to use that
model. Though capable of abstract thinking and reasoning, these students seem to
lack the skills to apply abstraction.

8 Jeff Kramer

What do we need to do?

If abstraction is a key skill for computing, we should focus more directly on ensuring
that our teaching is effective and that computing professionals have adequate
abstraction skills.

What has been presented here is mostly anecdotal, with some supporting evidence
from the literature. How can we put this on a more scientific footing and improve our
understanding of the situation? As in all scientific and engineering endeavours, before
we can control or effect, we must first measure. The aim is to gather the following
data:

1. measure students abstraction abilities annually while at College.

This could be used to check whether or not their ability correlates with their
grades, relative to others in their year. Assuming that our conventional
grading techniques - coursework, laboratory work and examinations - are
indicative of a student’s ability in computing, this would help to gain
confidence that abstraction is a key indicator of ability. A second purpose of
such testing is that it would provide an alternative means for checking
students’ abilities. Finally, it could also help to assess the efficacy of our
teaching techniques, ensuring that students of all abilities do improve as they
progress through the degree course.

2. measure students abstraction abilities at the time of application to study

computing.

Currently entry is based almost solely on school grades. Abstraction ability
could potentially be used to help eliminate those students that are not suitable
or less likely to perform well, and to select those who are not just
academically capable, but that have a real aptitude for computing and
software engineering.

Conducting these experiments and collecting this data depends on the availability of
good Abstraction Tests for measuring students’ abstract thinking and abstraction
skills. Unfortunately, we have been unable to find any existing appropriate tests. Tests
for the formal operations stage focus mainly on logical reasoning and are not
appropriate for testing abstraction skills nor capable of distinguishing between the
abilities of students at College level. Orit Hazzan, in the Department of Education in
Science and Technology at the Technion, has recommended that a specific set of test
questions be constructed, including sufficiently different kinds of tasks and
descriptions, supporting the collection of both quantitative and qualitative data, and
including open-ended questions and interviews. These tests should examine different
forms of abstraction, different levels of abstraction and different purposes for those
abstractions. This must be our next step. Only then can we be more definitive as to the
criticality of abstraction in computing and of our ability to teach it. For instance, we

Abstraction – the key to Computing? 9

should be able to confirm or refute that a particular course, such as formal modelling
and analysis, is indeed an effective means for teaching abstraction.

Conclusion

Like others, I believe that abstraction is a key skill for computing. It is essential
during requirements engineering to elicit the critical aspects of the environment and
required system while neglecting the unimportant. At design time, we need to
articulate the software architecture and component functionalities that satisfy
functional and non-functional requirements while avoiding unnecessary
implementation constraints. Even at the implementation stage we use data abstraction
and classes so as to generalize solutions.

This paper has proposed that the reason that some software engineers and computer
scientists are able to produce clear, elegant designs and programs, while others
cannot, is attributable to their abstraction skills. I have argued that a sound
understanding of the concept of abstraction and its importance in software
engineering, and the means to teach and to test abstraction skills are crucial to the
future of our profession. The primary need is for a set Abstraction Tests for checking
student progress, checking our teaching techniques and potentially as an aid for
student admissions selection.

Acknowledgements

I gratefully acknowledge many interesting discussions on abstraction with Orit
Hazzan, and the useful comments and suggestions of Carlo Ghezzi, Sebastian Uchitel,
Bashar Nuseibeh, Jeff Magee, Julie McCann and Susan Eisenbach. I also thank
Ricardo Stramer and Ellen Haigh for their help in tracking information and references
to work in cognitive psychology.

References

 [1] The ACM/IEEE Computing Curricula: Software Engineering Volume 2004

(http://www.computer.org/education/cc2001/)
 [2] Devlin, K . Why universities require computer science students to take math,

Comm of ACM, 46 (9), Sept 2003, 37-39.
 [3] Frorer, P., Hazzan, O. and Manes, M. Revealing the faces of abstraction.

International Journal of Computers for Mathematical Learning 2: 217-228,
Kluwer Academic Publishers, 1997.

 [4] Ghezzi, C., Jazayeri, M. and Mandrioli, D. (2003) Fundamentals of Software
Engineering. 2nd edition, Pearson International, New Jersey.

10 Jeff Kramer

 [5] Hazzan, O. Reducing abstraction level when learning abstract algebra concepts.
Educational Studies in Mathematics 40: 71-90,Kluwer Academic Publishers,
1999.

 [6] Huitt, W., & Hummel, J. (2003). Piaget's theory of cognitive development.
Educational Psychology Interactive. Valdosta, GA: Valdosta State University.

 [7] Kuhn, D., Langer, J., Kohlberg, L., and Haan, N. S. (1977). The development of
formal operations. in logical and moral judgment. Genetic Psychology
Monographs, 95, 97-188.

 [8] Magee, J and Kramer, J. (1999) Concurrency - State Models & Java Programs,
Chichester, John Wiley & Sons, Chichester.

 [9] Piaget, J. and Inhelder, B. (1969). The Psychology of the Child, Routledge &
Kegan Paul.

[10] Webster. (1966). Webster's Third New International Dictionary.
[11] Woolfolk & McCune-Nicolich. (1984). Educational psychology for teachers.

(2nd Ed.). Englewood Cliffs, NJ: Prentice-Hall, Inc.

