
1 Modeling Components and Component-Based
Systems in KobrA

Colin Atkinson, Philipp Bostan, Daniel Brenner, Giovanni Falcone, Matthias
Gutheil, Oliver Hummel, Monika Juhasz, Dietmar Stoll

University of Mannheim, Germany

1.1 Introduction

In this chapter we present a version of the Trading System case study modeled
according to the KobrA approach. KobrA is a UML-based method for describing
components and component-based systems developed at the Fraunhofer Insti-
tute for Experimental Software Engineering at the beginning of the decade. The
acronym stands for the term “Komponenten basierte Anwendungsentwicklung”
– German for “Component-based Application Development”. KobrA has been
successfully used by a number of companies in industrial settings and has given
rise to numerous specializations and offshoots (e.g. MARMOT [1] and MORA-
BIT [2]). The original version of the method [3] was developed for the UML 1.x
flavor of the UML, but in this chapter we introduce an updated version opti-
mized for use with the 2.x versions of the UML [4] and its related standards
such as OCL [5]. KobrA also provides support for other advanced software engi-
neering approaches such as product-lines, but these are beyond the scope of this
chapter. Here we focus on the component-modeling aspects of the method.

1.1.1 Goals and scope of the component model

KobrA’s approach to component modeling is based on the recognition that (a)
components are fundamentally systems in their own right and thus can be de-
scribed using the full spectrum of UML features and diagram types, and that
(b) component-based systems are essentially hierarchic and should ideally be
described in a way that brings out and reinforces their inherent hierarchical
composition. In KobrA, therefore, any “behavior rich” object that offers a well-
defined set of services (i.e. operations) can be regarded as a component. By
“behavior rich” we mean objects whose behavior is complex enough to warrant
“design” in the traditional sense of software engineering. Thus, large objects
such as systems and subsystems are natural KobrA components, but smaller
objects such as repositories and complex data structure can also be viewed as
components if they are complex enough to need a design. Simple data struc-
tures or information records are not usually viewed as components since their
implementation as classes or database schemata is usually straightforward.

The basic goal of KobrA is to allow the design of a complex system (i.e.
a component) to be split into separate parts (i.e. components) which can be

tackled separately. Two basic notions of composition are used to this end –
a dynamic (i.e. run-time) one and a static (i.e. development time) one. The
run-time one captures the core idea of a hierarchically structured system which
forwards requests to one or more black-box components. These may be internal
components (i.e. parts) of the system or external peers. The development time
concept of composition captures the idea of definitional containment (similar to
packages). In other words, it allows the design of a component (e.g. the system)
to be broken down into the design of multiple parts. KobrA’s dynamic form
of composition essentially corresponds to that used in the UML’s component
model, while the static form resembles that supported in the UML’s traditional
view of subsystems. These two forms of composition are clearly related, and in
KobrA the intention is that they should be “aligned”.

KobrA was originally devised as a way of “dividing” the effort of designing a
large system into smaller parts that could be “conquered” separately, and where
necessary by further dividing these into smaller parts and conquering them sep-
arately in a recursive way. As a consequence, it separates the description of a
component into a specification – which describes what a component does – and
a realization – which describes how it does it in terms of interactions with other
components. In a general sense, the specification of a component represents its
interface (or the service that it offers) and the realization represents its design.
The UML is the language used to describe the specification and realization of
components since this is the language most commonly used to model require-
ments and designs in mainstream development. However, this is just a pragmatic
choice. Other languages can be used instead if preferred. Moreover, it is possible
to apply the UML and its associated languages to varying levels of precision.
If the goal is simply to create a visual design of components, the UML can be
used informally. However, if the goal is to reason and prove properties about
the system, the UML can be used in a more formal style by capturing some of
the models (e.g. functional models) in OCL and by augmenting other models
with OCL constraints. Since some of the diagrams in the new version of the
UML [4] now have precise semantics (e.g. state diagrams), and OCL can be used
to remove any remaining ambiguity, KobrA models can provide the foundation
for several forms of automated verification. KobrA also has a concrete set of
consistency rule which can be used to check that component specifications and
realizations are well formed, although the automated verification of consistency
and system properties has not traditionally been a focus of the approach.

KobrA focuses on describing the architecture of components and component-
based systems at the design level. In modern MDA (Model Driven Architecture)
[6] terminology, this means that KobrA captures components at the level of
a Platform Independent Model (PIM). It does this by modeling the interface
(or services) supported by components (specifications) and how they are real-
ized through interactions with other components (realizations). The mapping
of component models to executable code and the deployment of physical com-
ponents to nodes in a network are inherently separated from the description of
application logic, but they are not dealt with explicitly in KobrA. Neither is the

2

mapping of the design models to executable code. However, since it applies UML
as a design language, KobrA allows the automatic implementation capabilities
of mainstream UML tools to be used in the usual way. With the greater pre-
cision now available in most UML diagrams and the possibility of augmenting
them with OCL constraints, KobrA also provides the foundation for more formal
mappings between component models and implementations.

1.1.2 Modeled cutout of CoCoME

Since KobrA is not a formal language, but rather a set of principles for using
mainstream modeling language to describe and break down the design of a com-
plex system in a component-based way, it is not possible to concretely state what
KobrA can and cannot handle. There is a certain degree of flexibility in the way
that the KobrA principles can be applied, and anything that conforms to these
principles can in practice be accommodated within the method. In other words,
because KobrA is built on mainstream modeling languages and principles, any-
thing that is not explicitly handled in the official KobrA documentation, such
as how to map components to code or how to deploy them, can be performed
using mainstream tools and practices.

The aspects of the CoCoME which KobrA handles well are the PIM-level
(i.e. design level) modeling of a component-based system’s properties, architec-
ture and components. The KobrA incarnation of the CoCoME therefore focuses
on describing the logical properties of the components in the case study from
three fundamental viewpoints (functional, structural and behavioral). The Ko-
brA version of the CoCoME faithfully represented the externally (i.e. user) vis-
ible properties of the system, but does not adopt the original decomposition of
the system where this does not fit with KobrA’s principles. As a result, many
of the smaller components in the KobrA version are the same as in the original
design, but some of the intermediate scale components have been omitted. None
of the issues related to quality of service, implementation, testing or deployment
are addressed in the KobrA version.

By far the biggest practice obstacle to the use of KobrA at the present time
is that lack of a dedicated tool that “understands” KobrA and is able to ensure
that the UML is applied in a KobrA-compliant way. As a result, the generation
of all the different viewpoints required in KobrA currently has to be performed
by hand, which is a tedious process. However, we hope to provide tool support
for KobrA in the near future.

1.1.3 Benefit of the modeling

Because KobrA is a design method, the benefits derived from KobrA are the
same as those derived from any platform independent design activity. These
include the ability to experiment with potential designs before committing to
concrete implementations, the availability of easy-to-read descriptions (e.g. sys-
tem specification) that can be understood by (and discussed with) customers
and users, the availability of common designs to facilitate joint understanding

3

amongst the members of the development team, and the creation of a platform
independent record of the system structure and project design decisions.

The advantages of applying the UML in the style of KobrA rather than an-
other method are threefold. Firstly, KobrA encourages the benefits of “divide
and conquer” at the design level by breaking the overall system into parts (com-
ponents) and allowing the design of larger components (and the whole system) to
ignore the designs of their sub-components. Secondly, KobrA greatly reduces the
complexity of individual diagrams by dividing the full description of a compo-
nent’s specification or realization into several separate, but well-defined, views.
In other words, the method provides a natural mechanism for breaking down the
“description” of a complex system, not just its logical structure, into separate,
manageable views. Thirdly, KobrA is highly prescriptive in its use of the UML.
The KobrA method actually embodies many of the principles of agile modeling
as documented by Ambler [7]. However, in contrast with agile modeling and
other methods, KobrA provides concrete guidelines about how to apply these
principles – that is, it explains what models should be created, what should go
into the models and how they should be related.

The benefits of using UML/OCL to model components in the style of Ko-
brA over the use of another more formal language are also twofold. First, UML
is a mainstream notation which can be used with any established development
practice where appropriate. Second, when supported by a method like KobrA,
the UML offers a customizable level of formality (or precision). It can be used
in the informal style supported by most development methods. However, when
supported by OCL, it can be used in a more formal style to create precise
and unambiguous representations of components. When used in thus way, the
creation of executable, platform specific images of the components can be auto-
mated, and rather than being “just a design”, the models become the primary
representations of components.

1.1.4 Effort and lessons learned

Modeling the CoCoME reinforced the fact that applying KobrA without a tool is
highly tedious and error prone. The creation of the KobrA CoCoME models and
associated documentation took up about 3 person months of effort. Completely
implementing and testing the components using normal development practices
would probably take another 1 to 1.5 person months.

The CoCoME modelling effort was beneficial because it highlighted aspects
of the KobrA method which would most benefit from enhancement and con-
cretization. This includes the specification of the non-functional and “quality of
services” aspects of components, and the provision of clear guidelines on how to
use KobrA in a more formal style and thus attain the benefits of automated ver-
ification and translation. The project also provided good evidence for the need
for a new form of component within KobrA – the so called “virtual component”.
The need for virtual components was recognized in the original version of the
method but was never explicitly documented. The CoCoME modelling exercise

4

helped clarify the precise properties and role of virtual components, and they
are used in several places in the KobrA solution.

1.2 Component Model

1.2.1 Separation of Development Dimensions

Engineers use a small number of mental tools to help manage the complexity
of large systems and artifacts. These include abstraction – which filters out
information that is not needed at a particular place or point of time – compo-
sition – which describes how a large complex artifact is made up from smaller
and simpler parts – and genericity – which captures information across families
of similar artifacts. These are found in all engineering disciplines, but in soft-
ware engineering they are usually intertwined in an ad hoc and tangled manner.
In particular, few software engineering methods make it clear whether different
views of an artifact are related to each other through differences in abstraction,
differences in location within a composition hierarchy or differences in levels of
genericity, or some combination of these. Moreover, when a software engineer
performs a step in a development process, it is rarely clear what changes he/she
should be attempting to make with respect to these concerns.

KobrA addresses these problems by strictly separating concerns for abstrac-
tion, composition, and genericity into different development dimensions. These
dimensions, illustrated in figure 1, are one of the bases for defining viewpoints
and the goals of development activities.

Fig. 1. Orthogonal Development Dimensions

In fact these are not the only possible development dimensions. In section
1.5 an example of another possible dimension is given.

5

1.2.2 Separation of Projections

The notion of documenting engineering artifacts from different viewpoints has
taken hold in software engineering over recent years. However, the viewpoints
and the contents of the views are generally defined in an ad hoc and unsystematic
way. Their definition is also typically tangled with the other development dimen-
sions identified above (i.e. composition, abstraction, and genericity). Thus, for
example, the views used to visualize a system (which often constitute the root of
the composition hierarchy) are usually quite different from those used to visual-
ize simple components (at a low level in the composition hierarchy, e.g. a stack).
Similarly, many more views are usually available at high levels of abstraction
(e.g. in the form of UML diagrams) than at lower levels of abstraction (e.g. in
the form of source code artifacts).

KobrA addresses this problem by defining and strictly separating three fun-
damental information projections – structural, functional, and behavioral. As
illustrated in figure 2, these are orthogonal to one another, and are applied
uniformly across all three development dimensions identified in the previous
subsection.

Fig. 2. Information Projections

KobrA defines various “localized” views on the system based on its principles
of locality and parsimony, i.e. a view contains only the current component un-
der consideration – the so-called subject – and its immediate environment. The
properties of the subject are then described from the perspective of these three
projections. In figure 2, the cloud represents the underlying component that is
the current subject of development and the surfaces at right angles represent the
three different projections.

The structural projection of a component describes the classes and rela-
tionships which the subject of the view is involved in and (depending on the
abstraction level) its structural composition. The functional view describes the
functions (i.e. operations) that the subject of a view possesses and (depending on

6

the abstraction level) any functional decomposition that these functions partici-
pate in. The behavioral view describes the timing and algorithmic properties of
the subject of the view and (depending on the abstraction level) any behavioral
composition that the subject participates in.

1.2.3 Separation of Specifications and Realizations

One of the oldest “separations of concerns” principles in software engineering is
the principle of separating the description of “what” something does from the
description of “how” it does it. This should apply to components just as it does
to any other software object. KobrA refers to the former as the specification of
the component and the latter as the realization. UML 2.0 also now recognizes
the difference between the “specification level” and “realization level” represen-
tations of a component. The realization describes its internal architecture – what
it is composed of, how it makes use of other components and what internal data
structures and algorithms it uses. The specification contains the subset of the in-
formation in the realization which is intended to be externally visible to clients.
In other words, the specification defines the overall interface to the component.
It defines the interface(s) of the component in terms of the possible messages
that it can support (i.e. the lists of operation signatures that it supports), but
also contains additional behavioral, functional, and structural information. The
specification also defines the component’s contracts with each of its clients.

As illustrated in figure 3, the separation of specification from realization
is applied across all projections uniformly (i.e. it is orthogonal to them). In
figure 3 the inner, slightly darker area of each projection depicts the specification
part while the outer area depicts the realization. The intent is to show that
the specification should be thought of as a subset of, or a window onto, the
realization.

Fig. 3. Separation of Specification and Realization

7

The cloud in figure 3 again represents the software object under considera-
tion. When viewed from the outside as a single black-box abstraction the entity
is regarded as a single integrated object – a component. In terms of UML
concepts, therefore, the specification treats a software entity as a component. In
other words, the specification provides a multi-view way of capturing the UML
notion of component. When viewed from the inside as a white box, however, the
structure of the entity, including its composition in terms of other lower level
components, is described. In terms of UML concepts, therefore, the realization
treats a software entity as a composite system. In effect, therefore, a specifica-
tion provides a “component” view of a system or a subsystem while a realization
provides a “composite system” view of them.

1.2.4 Separation of Process and Product

The fourth fundamental separation of concerns in KobrA is the separation of
product issues – the question of “what” should be built – from process issues –
the question of “how” and “when” these things should be built. This is achieved
by defining the artifacts making up a KobrA representation of a system sepa-
rately from the activities and guidelines used to create and maintain them. In
other words, the arrangement of KobrA views and their relationship are defined
completely independently of the notion of time. In effect, the different projec-
tions of a component depicted in figure 2 represent a snapshot of the component
at a particular point in the development process.

The advantage of defining the views of the system independently of process
concerns is that they are completely agnostic to the process used to develop
them. In other word, KobrA allows the information in each of the fundamen-
tal dimensions defined above (abstraction, composition, and genericity) to be
elaborated in any order. Thus, in the composition dimension it is possible to
develop composition information in a top-down way or a bottom-up way. In the
abstraction dimension it is possible to develop abstraction levels in a forward
engineering or a backward engineering way, and in the genericity dimension it is
possible to develop specialization levels by specializing from the general, or gen-
eralizing from the specific. Of course, in practice, a combination of the extreme
approaches is usually used.

In line with the goals of this book, in this chapter we focus on the “product”
aspects of KobrA – that is how components and component-based systems are
represented rather than how the information that goes into the representation
is generated. We also focus on the composition dimension since the topic of the
book is components and component-based development. The genericity dimen-
sion is not of direct interest as it focuses on Product Line Engineering (e.g. [8],
[9]) which is not addressed by the example.

A key principle in KobrA is that the system and all components of the system
should be treated alike (i.e. viewed in the same way) and that the composition
hierarchy should be made explicit. As illustrated in figure 4, therefore, in general
the complete description of a system is composed of a nested hierarchy of compo-
nents, each of which can be viewed using the same projections outlined above. Of

8

Fig. 4. Hierarchic System Architecture – Component Composition

course, there are strict consistency constraints between the views of composite
components and their subcomponents and client components and their server.
The properties of a subcomponent as represented in its specification have to
match the usage of the component as defined in the realizations of its clients
and the component it is contained within. As can be seen from figure 4, in UML
terms, a KobrA representation of a component-based system can be thought of
as a nested tree of component views (i.e. specifications) and composite system
views (i.e. realizations).

Most approaches to component-based development ignore the issue of how to
nest components within one another, even if they theoretically allow it, because
it is a non-trivial topic. In KobrA, the optimal nesting of components is chosen
by alignment with the visibility requirements of component instances and by
application of the principle of information hiding. However, a more detailed
discussion of this issue is beyond the scope of this paper.

Each of the core development dimensions discussed in section 1.2.1 has its
own associated paradigm, conventions, and set of best practices. In the generic-
ity dimension there is the notion of instantiating specific applications from the
generic framework by resolving decisions about what features a particular system
should provide. In the abstraction dimension, there is the notion of generating
platform specific artifacts (i.e. views) from more platform independent ones,
and gradually moving towards an executable incarnation of the components. In
the composition dimension there is the issue of whether to develop components
from scratch or whether to try to reuse them, and the question of how agile
to make the architecture structuring process in terms of the levels of desirable
re-factoring steps. In general, none of these paradigms or development processes
has dominance over the others, and they can be combined in arbitrary ways. For
the purposes of this chapter, however, we assume that the MDA [6] development

9

process is the overarching process and present the KobrA component modeling
approach in the context of the overall process advocated in MDA. Thus, in the
next section we will present the artifacts (i.e. diagrams) that form part of the
Computation Independent Model (CIM), in the section that follows we present
the artifacts that form part of the PIM and in the section after that we present
those that form part of a Platform Specific Model (PSM).

1.3 Modelling the CoCoME

It is not the goal of this chapter to show how every element of the CoCoME would
appear in KobrA or to capture every conceivable piece of information. Rather,
the goal is to try to give the reader the flavor of how the Trading System would be
modelled in KobrA and to present its strengths and weaknesses. The information
from CoCoME that is shown in the KobrA form is included as faithfully as
possible so as to facilitate comparison with the other approaches. Where the
CoCoME lacked information that we needed to optimally demonstrate a feature
of KobrA we have extended the example in the way that seemed to us to be
the most natural. Many of the differences between the KobrA models and the
original CoCoME models stem from our attempt to show how KobrA can be
used to support MDA by capturing the different CIM, PIM and PSM levels of
abstraction.

1.3.1 Computation Independent Model

The MDA paradigm envisages the creation of a high-level model of the “problem”
that the system under construction is intended to help solve, without concern
for the fact that the system is a computer-based entity. In KobrA, the CIM is
described by three different views (diagrams) representing the three core pro-
jections described above (see section 1.2.2). The Enterprise Concept Diagram
represents the structural projection, the Enterprise Process Diagram represents
the functional projection, and the Enterprise Workflow Diagram represents the
behavioral projection.

1.3.1.1 Enterprise Concept Diagram
The Enterprise Concept Diagram (ECD) represents the structural projection of
the problem space and describes the basic concepts of concern in the problem
domain (similar to the domain model in classic OOAD [10]; in other words it
can be understood as a computation-independent domain model). As can be
seen in figure 5 the ECD shows the Store as simply one of a community of actors
and relevant object types (conceptual classes). The actors are marked with the
stereotype <<role>> and the object types with the stereotypes <<entity>>.

1.3.1.2 Enterprise Process Diagram
The Enterprise Process Diagram (EPD) represents the functional projection of

10

MagicDraw UML, 1-1 D:\UNI-Projekte\cocome\cocome final\pdfs_erstellen\pdfs_erstellen\12.0_cocom

Academic Use Only

Enterprise Concept DiagramContext Realizationpackage []

<<role >>
StockManager

<<role >>
Headquarters

<<entity >>
Product

<<entity >>
Order

<<entity >>
Report

<<entity >>
Receipt

<<role >>
Supplier

<<role >>
Stock

<<role >>
Customer

<<role >>
Store

<<role >>
Bank

<<role >>
Manager

<<role >>
Cashier

*

*

*

*

*

1..*
*

*

1..**

1..*
*

*

*

*

1..*

*

*

Fig. 5. Enterprise Concept Diagram of the Store

the problem space and describes the basic functions (processes) that occur in
the problem domain and how they are related to one another. It is similar to the
structural models applied in the structured development techniques that used to
be popular in the 1970s and 1980s (e.g. [11]). As can be seen in figure 6, it groups
the processes (functions) in the domain into a hierarchy. In the trading system
case study we have chosen to view the predefined use cases as subprocesses of
three major processes: the Store Management process, the Customer Interac-
tion process and the Third Party Interaction process. The customer interaction
group is decomposed into the processes UC1 – Process Sale and UC2 – Man-
age Express Checkout – each representing a use case. The store management
group is decomposed into the process UC6 – Show Delivery Reports and the
subgroups Inventory Management and Personnel Administration. Other group-
ings are imaginable but are not shown in the diagram since the modeling of the
enterprise processes is restricted to those regarded as use cases. In KobrA, these
are represented at the leaf nodes of the enterprise process tree. We added the
node Personnel Administration to highlight the absence of some additional use
cases describing the activities of staff management that are supported by the
store system. Note the UC8 – Product Exchange (on low stock) Among Stores
is a part of more than one parent group. This kind of situation is common in
complex systems.

1.3.1.3 Enterprise Workflow Diagram
The Enterprise Workflow Diagram (EWD) represents the behavioral projection
of the problem space and describes the control and data flows that occur in
the domain. It takes the form of a workflow-style diagram such as supported in
BPMN [12] or Scheer [13], or activity diagrams in the UML. The EWD com-
plements the EPD by describing the relationship between the processes and the

11

MagicDraw UML, 1-1 D:\UNI-Projekte\cocome\cocome final\pdfs_erstellen\pdfs_erstellen\12.0_cocom

Academic Use Only

Enterprise Process DiagramContext Realizationpackage []

UC 2 - Manage Express Checkout

UC 4 - Receive Ordered Products

UC 6 - Show Delivery Reports

UC 8 - Product Exchange
(on low stock) Among Stores

UC 5 -Show Stock Reports

Personnel Administration

Third Party Interaction

Inventory Management

UC 3 - Order Products

Inventory Monitoring

UC 7 - Change Price

Customer Interaction

Goods Management

UC 1 - Process Sale

Store Management

Purchase Goods

TradingSystem

Fig. 6. Enterprise Process Diagram

UCs respectively. To enhance legibility, it can be split up into several subparts
as illustrated in figure 7. The workflow of the Supplier is not complete since it
does not have a direct bearing on the store.

1.3.2 Platform Independent Model

The Computation Independent Model describes the problem that needs to be
solved at a high level of abstraction without regard for the fact that IT tech-
nology will be used to realize a solution. The “system”, if it appears at all, is
simply viewed as one of the many actors involved in the domain. The next major
level of abstraction in MDA is the Platform Independent Model which describes
the IT solution without referring to the idiosyncrasies of a particular execution
platform. This is the level of abstraction that KobrA primarily focuses on. In
KobrA, the properties of the system and the various components making up the
system are described in a platform independent way using UML views. However,
in contrast with most other methods, KobrA treats every component separately
and uniformly, and organizes the platform independent views of the components
in a way that corresponds to, and highlights, the composition hierarchy.

1.3.2.1 Context Realization
At the top of KobrA’s component modeling hierarchy is the context realization.
This describes in detail how the system interacts with its environment (i.e. its

12

S
to

re
Su

pp
lie

r

start store
application to
order products

receive order

+

ship order

+
. . .

M
an

ag
er

St
oc

k
M

an
ag

er
A

pp
lic

at
io

n
show all
products
in stock

choose products
to be ordered

and enter ammout

select appropriate
supplier and
submit order

show
order ID

Shipping
Purchase Order

check
correctness
of delivery

+

X

roll in delivery

send delivery back

register reclamation

+

update
stock

Reclamation

order products

receive products

Purchase
Order

correct

.

Fig. 7. Purchase Goods Enterprise Workflow Diagram

context) and what types the system manipulates. The term “realization” reflects
the fact that the design of a system’s interaction with its environment constitutes
a solution to the high-level problem defined in the CIM, and usually involves a
redesign of existing practices. Also, as will be highlighted later, the context
realization uses the same views as the realizations inside the system. In UML
terminology, the context realization is a composite system, and is described using
the standard “composite system” views advocated in KobrA.

Structural View
The structural view of the context realization describes the information and
structural aspects of the environment of the system. It takes the form of a UML
class diagram and shows the agents that the system interacts with, the types that
the system shares with its environment (e.g. parameter types) and the operations
that the various actors and the system expose to one another. The context
realization explicitly focuses on those entities which will be implemented as part
of the system. Therefore, the concept named Store in the ECD is renamed to
TradingSystem to make it clear that we are no longer considering the real world
notion of “store”, but are describing the entity to be developed as a computer
based system. Figure 8 describes the structural model of the trading system
based on the previously described enterprise environment, the use case have
become responsibilities of the TradingSystem there.

Note that in the structural view of the context realization only those com-
ponents are included that occur in the abstract interaction models at this level.
Roles and types in the CIM that do not have a direct bearing on the operation
of the system are not included.

Functional View
The functional view shows the functional responsibilities assigned to the system

13

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-08-0

Academic Use Only

ContextRealization 2 Structural Modelpackage []

+cardPayment()
+cashPayment()
+changePrice()
+enterAmount()
+finishSale()
+identifyItems()
+listProducts()
+listProductsRunningOutOfStock()
+orderProducts()
+rollInDelivery()
+show DeliveryReport()
+show StockReport()
+startNew Sale()

<<Component>>
TradingSystem

<<role >>
StockManager

<<Component>>
Bank

+validateCard()
+debitCard()

<<entity >>
Receipt

<<role >>
Manager

<<role >>
Customer

<<entity >>
Supplier

<<entity >>
Product

<<entity >>
Order

<<role >>
Cashier

1..*

1..*

1..*

*

1..*

*

1..*

1..*

1..*

Fig. 8. Context Realization Structural View showing the responsibilities of TradingSys-
tem

and to the actors/components in the environment of the system, and shows how
these make use of each others functionality by sending messages. It takes the
form of a set of interaction diagrams – one for each use case to be supported by
the system.

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-07-2

Academic Use Only

Receive Ordered Products Receive Ordered Productsinteraction []

[if order correct]

[else]

alt

<<Component>>
 : TradingSystem

 : StockManager : Supplier

roll in delivery(orderID)2:

send back order3:

delivery arrives1:

[if order correct]

[else]

alt

Fig. 9. Context Realization Functional View – Receive Ordered Products Use Case

As illustrated in figure 9, by convention in the context realization the func-
tional view is shown in the form of sequence diagrams. This reflects the tradition
of using sequence diagrams (rather than other forms of interaction diagrams)
for showing interactions with the system when viewed as a black-box. In further

14

refinement steps, when lower level components are modeled, communication di-
agrams are used instead.

Behavioral View
The behavioral view shows the workflows/algorithms that are used to realize the
use cases that the system needs to support. It complements the functional view
by showing the algorithms (i.e. control flows and data flows) used to invoke the
operations involved in realizing the use case. It takes the form of a set of UML
activity diagrams – one for each use case to be supported by the system. Figure
10 gives an example.

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-08-0

Academic Use Only

receiveOrderedProducts receiveOrderedProductsactivity []

rollInDelivery

sendOrderBackcheckProducts

 [order correct]

 [else]

Fig. 10. Context Realization Behavioral View – Receive Ordered Products Use Case

1.3.2.2 TradingSystem Specification
The focus of the context realization is the system’s relationship to its envi-
ronment. As mentioned above, the context realization represents a “composite
system” view of the community of actors which interact to realize the goals
and/or business processes of concern. The system specification, in contrast, takes
a “component” view of the system and provides a complete “context indepen-
dent” description of the externally visible properties of the system. By “context
independent” we mean that the external actors that invoke the operations of the
system are only represented if their identity is essential to the functioning of the
system. If the identity of users is not important, as is usually the case, they are
not included in the specification.

Structural View
KobrA’s principles of locality and parsimony require that the specification of a
component only contains those components and actors that are directly needed
by the component. In other words, the specification of a component should only
contain the other components and actors that are called by the component un-
der consideration. The subject of the specification is identified by the stereotype
<<subject>> in the structural view. Actors that are only callers from a com-
ponent’s point of view are of minor importance, as these could be replaced by

15

any other actor calling the same functionality without losing any information.
In the TradingSystem, the Manager is a good example of this since it only
calls the TradingSystem. As illustrated in figure 11, the structural view of the
TradingSystem specification contains the components which are acquired and
the major entities that are necessary for the interaction/information exchange
between the components. The structural view can be complemented by OCL
constraints, e.g. invariants as shown in figure 11.

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-08-0

Academic Use Only

TradingSystem Specification Structual Modelpackage []

+cardPayment
+cashPayment
+changePrice
+enterAmount
+finishSale
+identifyItems
+listProducts
+listProductsRunningOutOfStock
+orderProducts
+rollInDelivery
+show DeliveryReport
+show StockReport
+startNew Sale

<<subject>>
<<virtual>>

TradingSystem

Product

-EAN
-id
-name
-purchasePrice
-salesPrice

<<Component>>
Bank

+validateCard
+debitCard

<<role >>
Supplier

Order

-id

inv: purchasePrice > 0

inv: salesPrice > 0

<<acquires>>
*

1..*

1..*

1..* 1..*
1..

Fig. 11. Trading System Specification Structural View

Note that at this stage of refinement no distinction is made between the
product type added to the inventory and the product type sold in the real existing
store, as defined in the description of CoCoME. Both represent the same real
world object and refinements are not needed here because the attributes are of
no interest at this stage.

In general, components have two roles in a system – one role is as a container
which encapsulates and provides an identity for a logically coherent group of
components (i.e. a composite system in the UML) and the other role is as a
contributor of its own functionality to the overall functionality of the system.
Some components, however, may only fill one role or the other. Some components
only serve to encapsulate a group of lower level components, and have no direct
functionality of their own. Others only contribute functionality to the overall
system and do not have any subcomponents. The latter represent the leaves of the
composition hierarchy, since by definition they do not contain subcomponents,
and the former, known as “virtual” components in KobrA 2.0, occupy higher
position in the composition hierarchy and by definition cannot be leaves because
they must have subcomponents. The term “virtual” emphasizes the contrast to
physical components with their own functionality.

The TradingSystem is an example of such a virtual component – that is,
a component which has no direct functionality of its own, but simply serves as

16

logical container that acts as a facade for a composite system. In UML terminol-
ogy, TradingSystem is an example of a component which has no “behavior” of
its own, but delegates the responsibility for realizing its functionality to its sub-
components. The stereotype <<virtual>> is used to indicate that a component
is virtual. In addition, note that the structural view of the specification does
not contain brackets after the operation names. The reason is that we regard
the functionality of a component as a responsibility the component has been
assigned rather than as an operation in normal sense. This is consistent with
the virtual concept, as a virtual component cannot have normal operations of
its own.

Functional View
The functional view of the TradingSystem specification describes the effects
of each of its responsibilities. They are documented in the form of operation
specifications whose general form is shown in the template in table 1.

Name name of the operation

Description identifies the purpose and provides a short informal description of the nor-
mal and exceptional executions

Constraints properties that constrain the realization and implementation of the compo-
nent

Receives information passed to the operation by the invoker (analogous to the argu-
ments of an operation in a programming language)

Returns information returned to the invoker by the operation (analogous to the
return value of an operation in a programming language)

Sends messages sent to acquired component instances, can be events or operation
invocations

Reads identifies externally visible information that is read but not changed by the
operation

Changes lists externally visible information that is changed by the operation
Rules rules governing the computation of the result
Assumes weakest precondition on the externally visible properties of the component

and on the inputs (see receives clause) that must be true for the component
to guarantee the post-condition (result clause)

Results strongest post-condition on the externally visible properties of the compo-
nent and the returned information (returns clause) that becomes true after
execution of the operation with true assumes clause

Table 1. Operation Specification Template

Each entry in this template needs only to be included in an operation specifi-
cation if it carries useful information for that operation. Moreover, the informa-
tion can be represented formally in OCL or in the semiformal style popularized
by the Fusion method [14]. In general there is one operation specification for
each responsibility, but for space reasons we only show the specification of the
changePrice operation in table 2 below. This uses the semi-formal Fusion style
combined with OCL constraints.

Behavioral View
The behavioral view shows the externally visible states of the component and the
meaningful sequences of operation invocations. Since the trading system serves

17

Name changePrice

Description This method changes the salesPrice of a product.

Receives
productID : String – the identifier of the product
price : Real – the new salesPrice of the product

Returns
success : Boolean
– true, if the salesPrice is changed
– false, otherwise.

Changes The salesPrice of the product.

Assumes
-- exactly one Product exists with the ID = productID
pre: Product.select(id = productID).size() = 1
pre: price > 0

Result post: Product.select(id = productID).first().salesPrice = price

Table 2. TradingSystem Specification Functional View – changePrice Operation

multiple users simultaneously it has no externally visible states. Each operation
can be invoked at any time.

1.3.2.3 TradingSystem Realization
The realization of a component describes its design as if it were a “composite
system” in the UML sense. The information in the specification structural view
is still valid, but is augmented by the additional design information used to
realize the component’s services – that is, by a description of how the properties
exposed in the specification are supported in terms of internal algorithms and
interactions with other components and data structures.

Structural View
Based on the original design of the system (see figure ??, the TradingSystem
is composed of three types of subcomponents – Inventory, CashDesk, and
Coordinator which coordinates interaction with the available CashDesk in-
stances (see figure 12). From a UML perspective, the class diagram representing
the realization structural projection can be regarded as a refinement of the class
diagram representing the specification structural view. This means that all the
information contained in the specification structural view is also present in the
realization view, but additional design information has been added.

An interesting issue in deciding the internal make up of the trading system is
the usefulness of the CashDeskLine component used in the original solution (see
figure ??). Although this does not appear in the use case diagram, the sequence
diagram (see figure ??) provides a clear description of how the express checkout
is triggered by a Coordinator within the CashDeskLine. The CashDeskLine
itself is actually a virtual component of the kind discussed above since it essen-
tially serves to encapsulate the set of CashDesk instances within the system, and
provides no direct functionality of its own. However, since the TradingSystem is
already a virtual component, and there is little to be gained from nesting virtual
components directly within one another, we decided to omit CashDeskLine from
our design.

An interesting aspect of the decomposition of the TradingSystem into the
three subcomponents Coordinator, CashDesk and Inventory, is that we can

18

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-08-0

Academic Use Only

TradingSystem Realization Structual Modelpackage []

<<Component>>
Inventory

+getProductWithStockItem()
+changePrice()
+show StockReport()
+listProductsRunningOutOfStock()
+listProducts()
+show DeliveryReport()
+orderProducts()
+updateInventory()
+rollInDelivery()

<<Component>>
CashDesk

+cardPayment()
+cashPayment()
+enterAmount()
+finishSale()
+identifyItems()
+startNew Sale()
+triggerExpressCheckOut()

Product

-EAN
-id
-name
-purchasePrice
-salesPrice

<<subject>>
<<virtual>>

TradingSystem

<<role >>
StockManager

<<Component>>
Bank

+validateCard()
+debitCard()

<<Component>>
Coordinator

+registerSale()

SalesProduct

StockItem

-amount
-maxStock
-minStock

<<role >>
Customer

<<role >>
Supplier

<<role >>
Cashier

Order

-id

inv: maxStock > minStock

inv: purchasePrice > 0

inv: salesPrice > 0

<<acquires>>

<<made from>>

8

1..*

1..*

*

<<aquires>>

1..*

*

<<made from>>

<<made from>>

1..*

<<acquires>>

*

Fig. 12. TradingSystem Realization Structural View

now see a difference between the real world products added to the inventory and
those passed through the cash desk, since those added to the inventory represent
StockItems, with the additional information that the inventory should have a
minimum or a maximum amount of this product. To stay as faithful as possible
to the CoCoME we decided to model them as two separate classes – StockItem
which represents products in the Inventory and SalesProduct which represents
products associated with the CashDesk. To show that they are conceptually
related they are both defined as specializations of Product.

Functional View
Each responsibility described in the specification of the TradingSystem com-
ponent is refined and added to the realization of the component. In the case
of a virtual component such as TradingSystem the responsibilities are divided
into subresponsibilities and are distributed amongst the subcomponents. The
functional view of an operation’s realization is captured in terms of interaction
diagrams. These take the form of communication diagrams and clearly illustrate
which additional components are used. Only those that are called from or created
by the component under consideration have a representation in the structural
model.

Figure 13 shows the functional view of the realization of the rollInDelivery
operation. Due to lack of space the other operations of TradingSystem are not
shown here.

19

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-07-2

Academic Use Only

interaction rollInDelivery rollInDelivery[]

<<Component>>
 : Inventory

<<subject>>
<<virtual>>

 : TradingSystem

rollInDelivery(orderID)1: rollInDelivery(orderID)2:

Fig. 13. TradingSystem Realization Functional View – rollInDelivery Operation

Behavioral View
The behavioral view shows the algorithms used to realize the component’s op-
erations in terms of activity diagrams – one for each operation. Again, for space
reasons, we consider only one operation here, rollInDelivery (see figure 14).
The small fork-like symbol in the activity indicates that it is further refined at
the next level of decomposition (anchor notation).

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-08-0

Academic Use Only

rollInDelivery rollInDeliveryactivity []

rollInDelivery : rollInDelivery

Fig. 14. TradingSystem Realization Behavioral View – rollInDelivery Operation

1.3.2.4 CashDesk Specification
A fundamental principle of the KobrA approach is that all components should
be described in the same way regardless of their location in the composition
hierarchy. As long as a component is sufficiently complex it can be further de-
composed into additional subcomponents. Due to the shortage of space we con-
centrate on the CashDesk component in this section since the Inventory and
the Coordinator are treated in the same manner.

Structural View
All components have a specification and a realization which are viewed from the
same perspectives as before. Like the TradingSystem component, CashDesk is
a virtual component which means its responsibilities are implemented by dele-
gation to operations of its subcomponents. Figure 15 shows the structural view
of the CashDesk component.

20

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-08-0

Academic Use Only

CashDesk Specification Structural Modelpackage []

<<subject>>
<<virtual>>
CashDesk

+cardPayment
+cashPayment
+enterAmount
+finishSale
+identifyItems
+startNew Sale
+triggerExpressCheckout

<<Component>>
Inventory

+getProductWithStockItem
+updateInventory

<<Component>>
Bank

+validateCard
+debitCard

<<Component>>
Coordinator

+registerSale

SalesProduct

<<role >>
Customer

<<role >>
Cashier

<<aquires>> <<aquires>>

*

<<aquires>>

Fig. 15. CashDesk Specification Structural View

Functional View
As before, the functional view of the components shows the effects of each op-
eration in terms of declarative operation specifications. In table 3 we show the
specification of the cardPayment responsibility.

Name cardPayment

Description This method realizes the card payment.
Constraints For the payment the connection to the bank has to be established.
Receives sum : Real – the sum to pay

Returns
success : Boolean
– true, if the payment was successfull
– false, if the customer cannot pay via card.

Sends Bank:validateCard(cardInformation, pin) Bank::debitCard(transactionID)
Changes The card of the customer is debited.

Rules
Bank::debitCard(transactionID) can only be called, if the card is valid. To
validate the card the customer has to enter his PIN. The cardInformation is
read from the credit card of the customer.

Assumes pre: sum > 0
Result The card of the customer is debited with sum.

Table 3. CashDesk Specification Functional View – cardPayment Operation

Behavioral View
The behavioral view shows how the CashDesk component responds to external
stimuli, and when the operations of the component may be sensibly executed.
Figure 16 shows that there are two major operational states of the CashDesk,
normalMode and expressMode. The latter is triggered from outside the CashDesk

21

under certain conditions. It further shows the operations which can be executed
within the states and the events leading to the state transitions.

1.3.2.5 CashDesk Realization
As usual, the realization of the CashDesk describes how the properties described
in its specification (i.e its contract with other components) are realized in terms
of internal algorithms and interactions with other components and data struc-
tures.

Structural View
Since the CashDesk is also a virtual component and therefore has no direct
functionality of its own, none of the responsibilities of the component are shown
in the structural view as shown in figure 17. This reinforces the idea that the
component doesn’t have any operations of its own, but fulfills its responsibilities
by delegation.

Functional View
Figure 18 shows how the cardPayment responsibility of CashDesk is realized. In
addition to the components involved in the cashPayment, paying by credit card
also involves the components CardReader and Bank. The Customer also has to
enter his PIN into the CardReader.

Behavioral View
At the level of the CashDesk realization the responsibility identifyItems has to
be refined into lower level activities. Figure 19 shows the algorithm used to realize
identifyItems. Each SalesProduct is identified via the BarCodeScanner. If
a SalesProduct is not recognized by the scanner it is possible either to add
its identifier by hand (enterEANByHand) or to completely reject the Product.
Inventory (not shown here) is also a virtual component whose functionality is
delegated to its subcomponents.

1.3.2.6 CashDeskApplication Specification
Since the components of CashDesk are still relatively complex they are further
decomposed into subcomponents using the same basic process. Here we focus on
the CashDeskApplication subcomponent which was given in the CoCoME. As
usual, we first describe the CashDeskApplication’s specification level. However,
in this case, the component is a concrete one with concrete operations of its own
(see table 4).

Structural View
Figure 20 shows the structural view of the CashDeskApplication component.

Functional View
Table 4 shows the operation specification of the operation setPayMode, which
is part of the functional model of the CashDeskApplication. The operation is

22

M
agicD

raw
 U

M
L, 1-1 D

:\U
N

I-P
rojekte\cocom

e\cocom
e final\pdfs_erstellen\pdfs_erstellen\12.0_cocom

A
cadem

ic U
se O

nly

Cash Desk Statechart
Cash Desk Statechart

state m
achine

[

]

entry / setLightDisplay(black)

O
utputItem

Error
entry / outputError

O
utputC

ardError
entry / outputError

entry / registerSale

processSale

C
ardPaym

ent

SaleFinished

C
ollectItem

s
BarPaym

ent

Ready

New
Sale

Norm
alM

ode

ExpressM
ode

entry / setLightDisplay(green)

C
ollectItem

s
entry / int noItem

s = 1

enterItem
 [noItem

s < 8] / noItem
s++

O
utputItem

Error

entry / outputError

entry / registerSale

processSale

SaleFinished

BarPaym
ent

Ready

New
Sale

 [expressM
odeTriggered]

processCardPaym
ent

 [!expressM
odeTriggered]

payW
ithCard

finishSale
item

NotRecognized
m

akePaym
ent

payCash
payCash

enterItem

cardError

startNew
Sale

enterItem

disableExpressM
ode

disableExpressM
ode

disableExpressM
ode

disableExpressM
ode

startNew
Sale

enterItem

saleFinished

item
NotRecognized

payCash m
akePaym

ent

Fig. 16. CashDesk Specification Behavioral View

23

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-08-0

Academic Use Only

CashDesk Realization Structural Modelpackage []

<<Component>>
CashBox

+cardPayment()
+cashPayment()
+enterEANByHand()
+finishSale()
+getAmount()
+openCashBox()
+startNew Sale()

<<Component>>
Inventory

+getProductWithStockItem()
+updateInventory()

<<Component>>
CashDeskApplication

+addProduct()
+finishSale()
+setCardInformation()
+setPayMode()
+startNew Sale()

<<Component>>
Light Display

+sw itchExpressMode()
+sw itchNormalMode()<<Component>>

Bar Code Scanner

+scanProduct()
<<Component>>

Printer

+finishSale()
+startNew Sale()

<<Component>>
CashDeskGUI

+display()
+startNew Sale()

<<Component>>
Bank

+validateCard()
+debitCard()

<<Component>>
Coordinator

+registerSale()

<<Component>>
CardReader

+readCard()

<<subject>>
<<virtual>>
CashDesk

SalesProduct

<<role >>
Customer

<<role >>
Cashier

<<made from>>

<<made from>>

<<made from>>

<<made from>>

<<made from>>

<<made from>>

<<made from>>

<<aquires>>
<<aquires>>

<<aquires>>

Fig. 17. CashDesk Realization Structural View

called when the customer wants to pay. He has the choice to pay via credit card or
cash. His decision is sent to the CashDeskApplication via the mode parameter of
the setPayMode operation. Depending on the mode, the CashDeskApplication
communicates with the CardReader and the Bank or with the CashBox to com-
plete the payment. At the end of the setPayMode method the Inventory is
updated with the purchased Products.

Behavioral View
The behavioral view of CashDeskApplication in figure 21 shows the different
externally visible states of the component.

This process of decomposition can be continued but due to the lack of space
we do not show any further components here. Hopefully it should by now be
clear how the KobrA approach is based on the hierarchical organization and
description of components in the system.

24

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-08-0

Academic Use Only

cardPayment_falsch cardPaymentinteraction []

<<Component>>
 : CashDeskApplication

<<Component>>
 : CashDeskApplication

<<Component>>
 : Bank

<<Component>>
 : CashBox

<<Component>>
 : CashBox

<<Component>>
 : CardReader

<<Component>>
 : CashDeskGUI

<<subject>>
<<virtual>>

 : CashDesk

<<subject>>
<<virtual>>

 : CashDesk

<<role >>
 : Customer

<<role >>
 : Cashier

<<role >>
 : Cashier

info,PIN:= readCard()4:

display(change)14:

cardPayment1:

setPaymode(CARD)3:

setPayMode(CASH)9:

amount:=getCashAmount()10:

openCashBox()12:

transactionID:=
validateCard(info, PIN)

7:

 debitCard(transactionID)8: [transactionID != null]

amount:=getAmount16:

display(amount)13:

processPayment15:

cashPayment()11:

cardPayment()2:

pullCardRequest5:

PIN:= askForPIN6:

Fig. 18. CashDesk Realization Functional View – cardPayment Operation

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-08-0

Academic Use Only

identifyItems identifyItemsactivity []

enterEANByHand

scanProduct

signalError

rejectItem

 [id human-readable]

 [invalid id]
[else]

[else]

Fig. 19. CashDesk Realization Behavioral View – identifyItems Operation

1.3.3 Platform Specific Model

The platform independent description of the CoCoME example developed in
section 1.3.2 describes the system at a level of abstraction which is independent of
specific platform idiosyncrasies. The models focus on elaborating the component
structure of the system by describing how the larger components are composed
of smaller components which in turn are composed of smaller components until a
level of granularity is reached where further decomposition is unnecessary. Each
component is described in the same way whatever its location in the composition
hierarchy is.

The next step in the MDA process is to develop one or more platform specific
models in which one or more of these abstract (or logical) component represen-
tations are mapped into a more platform specific form, with the eventual goal of
creating executable incarnations of the components. KobrA does not prescribe

25

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-08-0

Academic Use Only

CashDeskApplication Specif ication Strucutral Modelpackage []

<<Component>>
Inventory

+getProductWithStockItem
+updateInventory

<<subject>>
CashDeskApplication

+addProduct
+finishSale
+setCardInformation
+setPaymode
+startNew Sale

<<Component>>
CashBox

+openCashBox
+getAmount

<<Component>>
CashDeskGUI

+display

<<Component>>
CardReader

+readCard

<<Component>>
Bank

+validateCard
+debitCard

<<aquires>>

<<aquires>> <<aquires>>

<<aquires>>

<<aquires>>

Fig. 20. CashDeskApplication Specification Structural View

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-08-0

Academic Use Only

CashDeskApplication Specif ication CashDeskApplication Specif icationstate machine []

SaleInProgressCardInformation

SaleInProgressCardMode

SaleInProgress

Idle f inishSale
finishSale

setPaymodeCash

setPaymodeCard

setPaymodeCash

startNew Sale

setCardInformation

finishSale

setCardInformation

Fig. 21. CashDeskApplication Specification Behavioral View

how this is done or in what form the “platform specific” forms of components
should be represented. This obviously varies in accordance with the nature of the
platform. However, in order to illustrate what form the platform specific models
of components might take, in this section we briefly show some examples.

Figure ?? shows how the CashDeskLine component is implemented with
the help of the components of a middleware based platform. As we explained
above, we chose to omit CashDeskLine in our model, but instead we can show
how CashDesk might be realized using a similar approach. This is illustrated in
figure 22.

Similarly, we can also show how specific instances of our overall architecture
are deployed to specific nodes of the network. This is illustrated in figure 23.

1.4 Analysis

As explained in section 1.1, KobrA is intended to be a component-oriented way
of performing system design using the UML. As with most uses of the UML for

26

Name setPayMode

Description The customer wants to pay via card or cash.
Constraints For card payment the network connection to the bank has to be established.
Receives mode:String – the paymode, could be ”CASH” or ”CARD”
Returns Boolean: true for success, false for failure e.g. when card payment returns a false

value, the Cashier could try bar payment.
Sends Inventory::getProductWithStockItem(barcode)

CardReader::readCard() – for card payment
Bank:validateCard(cardInformation, pin)
Bank::debitCard(transactionID)
CashBox::getAmount()
CashBox::openCashBox() – to open the CashBox
CashDeskGUI::display() – to display the sum or the amount of change
Inventory::updateInventory(shoppingCart) – to update the Inventory when the
payment was successful

Reads Inventory::getProductWithStockItem(barcode)
Changes The Inventory is updated and in the case of card payment, the card of the

customer is debited.
Rules The amount which the customer has to pay is the sum of the items in shopping

cart plus some taxes.
Assumes pre: CashBox.getAmount() > 0
Result The Inventory is updated.

The card of the customer is debited with the amount of the shopping cart or the
customer paid cash.

Table 4. CashDeskApplication Specification Functional View – setPayMode operation

design, therefore, the analyzing, checking and/or prediction of system properties
is not the main focus of the modeling effort. The main value of the models is as
an easy-to-read communication vehicle to facilitate discussions and joint under-
standing between members of the development team and between the develop-
ment team and customers/users. The design models also serve as the starting
point for the creation of the implementation.

Although most UML tools today provide assistance in creating of implemen-
tations from models, no tool to date is able to provide a comprehensive mapping
of all UML features to code. In mainstream development, therefore, some part
of the implementation has to be written by hand. As a result, it is impossible
to “prove” that an implementation so created will deliver the modeled prop-
erties because it is impossible to rule out human error. However, by creating
a consistent and precise design of a system, which describes the properties of
the system from multiple, focused viewpoints, the chances of creating a correct
implementation with the desired properties is greatly increased.

Since many UML diagrams are now inherently precise and unambiguous
(because of the well defined semantics of the applied UML features) or can
be made precise by the addition of OCL constraints, KobrA can be used to
create precise and unambiguous descriptions of components and their designs.
Moreover, because of the expressiveness of UML and OCL almost all kinds of
system properties can be specified, especially if additional UML profiles are used,
such as the Real Time [15] and Quality of Service profiles [16]. The essential
prerequisite for a sound set of models is that they are internally well-formed and
mutually consistent. At present we have no tool for checking this, although we
have defined many well-formedness and consistency rules. In principle the usual
well-formedness and consistency checking techniques used with other formalisms

27

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-07-0

Academic Use Only

package cashDeskPSM[]

<<virtual>>
CashDesk

<<component>>
EventBus

<<component>>
cashDeskChannel:EventChannel

<<component>>
extCommChannel:EventChannel

<<component>>
CashDeskApplication

<<component>>
BarCodeScanner

<<component>>
CashDeskGUI

<<component>>
Printer

<<component>>
LightDisplay

<<component>>
CashBox

Fig. 22. CashDesk Platform Specific Realization Structural View

can be used with KobrA models. As well as checking inter-model consistency,
this includes

1. verification of state machines (e.g. reachability, dead-ends) on the specifica-
tion behavioral views,

2. checks of pre and post condition compatibility and logical consistency on the
specification functional views,

3. formal verification of algorithms on the realization functional and behavioral
views.

1.5 Tools

As can be seen from the numerous diagrams, at its core KobrA is a view-based
method which prescribes what content the different views of a component should
contain and how they should be organized. Although there is no strict require-
ment to use tools when applying KobrA, developing all these views by hand and
keeping them all consistent with one another is impractical without tool support.
In this section we therefore give a brief overview of the tool support that we are
developing at the Lehrstuhl für Softwaretechnik at the University of Mannheim
to address this need.

The tool was designed with three main goals in mind

– to provide a systematic and user friendly conceptual model and framework
for defining and navigating around different views of a component and/or
component based system

– to provide a flexible infrastructure which allows consistency checking and
view-generation tools to be easily and systematically defined and added

– to use a unifying meta-model which allows all views to be generated auto-
matically from a single underlying representation of a component

28

MagicDraw UML, 1-1 C:\Dokumente und Einstellungen\moni\Eigene Dateien\12.0_cocome_2007-07-0

Academic Use Only

deploymentDiagrampackage PSM[]

StoreServer

CashDeskPC

<<component>>
CashDesk:CashDeskApplication

<<component>>
Inventory::InventoryApplication

<<component>>
ProductContainer

<<component>>
Coordinator

<<component>>
EventBus

StoreClient

<<component>>
CashDesk::CashDeskGUI

<<component>>
Inventory::InventoryGUI

<<component>>
Printer

<<component>>
CashBox

<<component>>
LightDisplay

<<component>>
CardReader

<<component>>
BarCodeScanner

<<component>>
Bank

Fig. 23. TradingSystem Deployment Diagram

To make the complexity tractable for developers, the user interface is based on
the metaphor of a multidimensional cube consisting of multiple cells. An example
of a cell would be the structural view of the specification of the TradingSystem.
A cell of the cube is determined by choosing a value for each dimension. The
preconfigured dimensions for KobrA component development are “component”,
“abstraction”, and “projection”. The component dimension specifies the (sub-)
component which is being worked on at a particular point in time. The ab-
straction dimension determines the level of abstraction, with the default values
being specification, realization, and implementation. The projection dimension
identifies the structural, functional or behavioral viewpoint from which the com-
ponent is being viewed. A cell can have one or more perspectives (e.g. a UML
class diagram) on which the developer works with his favorite editor.

The navigation, management and consistent maintenance of artifacts become
increasingly difficult as their number increases. An ideal solution would be to
have every editor working directly on a common model of the component and
have changes synchronized with the model so that consistency among different
views is ensured. This is the long term goal of the tool. As a pragmatic intermedi-
ate approach, multiple formats are supported and are synchronized by specially
written “consistency checking” plugins. The environment is easily extendable,
so that new editors or consistency checkers can be added at any time.

It is possible to add an element to an existing dimension or to add a whole
new dimension. For example, to support versioning, one could add a version

29

dimension with each dimension element representing different versions of the
component.

In summary, our tool serves as a framework for integrating professional CASE
tools as well as self-made editors and offers a unified navigation paradigm and a
single underlying metamodel. Artifacts from the employed tools, such as UML
diagrams from MagicDraw, can of course be used outside our tool at any time.

1.6 Summary

In this chapter we have presented the CoCoME example as it might be modeled
using the KobrA approach. The underlying nature of the components and sys-
tem architecture is much the same as in the other approaches. What differs is
KobrA’s way of visualizing and presenting components and composite systems.
As mentioned at the beginning, KobrA encourages a uniform representation of
components regardless of their granularity or their location in the composition
hierarchy. This means that the same views and principles are used to model
smaller components near the leaf of the tree (e.g. CashDeskApplication) as are
used to model larger component at the root of the tree (e.g. TradingSystem).
In addition, KobrA requires all components in the tree to be described at the
same level of abstraction (i.e. at the same level of platform independence).
Thus, CashDeskApplication has the same level of platform independence as
TradingSystem. Changes in platform specificity are clearly visible and are sepa-
rated out into a different set of models (i.e. one or more platform specific models).

An important aspect of all software specification approaches is the ability
to define extra functional properties and requirements. In KobrA the difference
between extra functional requirements and extra functional properties is that
the former are associated with specifications and the latter with realizations. An
extra functional “statement” in a specification is a promise that the component
makes to its clients. It is part of its contract with them and thus is something
that the builder of the component must fulfill – it is a requirement. In contrast,
an extra functional “statement” in the realization of a component is a description
of some fact that is true about the chosen design – it is a property.

Extra functional requirements and properties can be added to KobrA models
in one of two ways. They can either be added to the existing views in the form of
constraints or annotations or they can be defined in an additional “extra func-
tional properties/requirements” view, or both. At the specification level, extra
functional requirements that apply to a single method can easily be added to the
operation specification of that method by adding specialized clauses (rows). Ex-
tra functional requirements that span methods (i.e. invariants) are best defined
in a separate view, however.

At first sight, KobrA’s strategy of creating “localized” views of each compo-
nent may seem to involve a great deal more redundancy and verbosity than is
necessary. To a certain extent this is true. However, provided that suitable tool
support is available, we believe the advantages of separating concerns, treating
all components uniformly, and fully elaborating their properties from a number

30

of orthogonal viewpoints, greatly outweigh the costs. They not only simplify and
clarify the initial development process, they make the resulting components and
component-based systems much more maintainable and reusable.

1.7 Acknowledgements

The presented work was partially supported by the ECOMODIS project funded
by the “Förderprogramm Informationstechnik Baden-Württemberg (BW-FIT)”
(http://www.ecomodis.de).

1. Fraunhofer Institute for Experimental Software Engineering: The MAR-
MOT Project - Component-based Development of Embedded Systems.
http://www.marmot-project.de/de/home/index.html (2003)

2. Brenner, D., Atkinson, C., Paech, B., Malaka, R., Merdes, M., Suliman, D.: Reduc-
ing Verification Effort in Component-Based Software Engineering through Built-In
Testing. In: Proceedings of the International IEEE Enterprise Computing Confer-
ence (EDOC2006) 16th-20th October, Hong Kong . (2006)

3. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R.,
Muthig, D., Paech, B., Wüst, J., Zettel, J.: Component-Based Product Line Engi-
neering with UML. 1st edn. Addison Wesley, Reading, Massachusetts, USA (2001)

4. OMG: UML 2.0 Superstructure Specification. http://www.omg.org/docs/ptc/03-
08-02.pdf (2003)

5. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA (1998)

6. OMG: MDA Guide Version 1.0.1. http://www.omg.org/docs/omg/03-06-01.pdf
(2003)

7. Ambler, S.W.: Agile Modeling. http://www.agilemodeling.com (2006)
8. Clements, P., Northrop, L.: Software Product Lines. Addison-Wesley Boston (2002)
9. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T.,

Debaud, J.M.: PuLSE. A Methodology to Develop Software Product Lines. In:
Proceedings of the Symposium on Software Reuse (SSR ’99). (1999)

10. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design. 3 edn. Prentice Hall (2005)

11. Coad, P., Mayfield, M.: Coad, Yourdon, and Nicola: OOA, OOD, & OOP. Wiley-
QED Publishing, Somerset, NJ, USA (1994)

12. OMG: Business Process Modeling Notation Specification - version 1.0.
http://www.bpmn.org/Documents/OMG Final Adopted BPMN 1-0 Spec 06-02-
01.pdf (2006)

13. Scheer, A.W.: ARIS - Modellierungsmethoden, Metamodelle, Anwendungen.
Springer Verlag (2001)

14. Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., Jeremaes,
P.: Object-Oriented Development. The Fusion Method. Prentice Hall (1994)

15. OMG: UML Profile for Schedulability, Performance and Time.
http://www.omg.org/cgi-bin/doc?formal/2005-01-02 (2005)

16. OMG: UML Profile for Modeling QoS and Fault Tolerance Characteristics and
Mechanisms. http://www.omg.org/cgi-bin/doc?formal/06-05-02 (2006)

31

