FAST product-line architecture process

Maarit Harsu
Software Systems Laboratory
Tampere University of Technology
P.O. Box 553, 33101 Tampere
e-mail:firstnane. |l astnane at tut.fi

Contents
1 Introduction 3
2 Overview of FAST 4
21 Roles . . . . . .. 4
2.2 Artifacts . . . .. 6
2.3 Activities . . .. 6
3 Principles of FAST 10
3.1 AsSumptions . . . ... L e 10
3.2 ldeasandmethods. . . . ... ... ... .. ... ....... 10
3.3 Focusingthekeyideas . .. .. ... ... ... ......... 11
4 Domain qualification 14
5 Domain engineering 17
51 Domainanalysis. . . . . . . . . . ... 18
5.1.1 Commonalityanalysis . .. ... ............. 19
5.1.2 Application modeling language . . ... ... .. .. .. 20
5.2 Domainimplementation . .. ... ... .. ... ........ 21
6 Application engineering 22
7 PASTA model 25
7.1 Elementsof PASTAmodel . .. .. .. ... ... ........ 25
7.2 Statemachines . ... .. ... ... .. ... 26
7.3 Describing PASTAmodel . . . . . ... .. ... ... ...... 27



7.4 Creating PASTAmodel . . . . . .. ... ... ... ..., 31

8 Mobile Terminal Example 33
8.1 Overview of mobileterminals . . . . ... ... ... ...... 33
8.2 Domain qualification . . . . .. ... ... ... .. ... ... . 33
8.3 Domainengineering. . . . . . . . . . e 35
8.4 Applicationengineering. . . . . .. .. .. .. .. 36
85 Conclusions . . . . .. ... .. 37

9 Conclusions 39

References 41



1 Introduction

This report gives an overview of FAST (Family-Oriented Ahbstion, Specifica-
tion, and Translation) process. It has been introduced &TAby David Weiss

and further developed at Lucent Technologies Bell Laboedo The report is
mainly based on the book cornerning FAST [WL99]. In additithrere are other
publications about FAST [ADD0O0, ADHT00, CHW93].

FAST applies product-line architecture principles intétware engineering
process. Thus, a common platform is specified to a family @iiveme products.
The platform is based on the similiraties between seveadymts close to each
other. The variabilities among the members of a productlfagan be imple-
mented with different variation techniques such as pampa¢ibn or conditional
compilation. (A more precise representation about vdrtgbn product-line ar-
chitectures can be found, for example, in [Myl02].) The msp of FAST is to
make software engineering process more efficient by reduatiple work, by
decreasing production costs, and by shortening time-tdeha

FAST process can be applied in a consistent and disciplimgd Wihis is called
PASTA (Process and Artifact State Transition Abstractimodel. PASTA model
provides a path to follow during FAST process. It determiaest of steps that
can succeed the current step. Thus, it gives precise itistngdo follow, but still
supports individual choises to make during the process.plingose of PASTA is
to make the software engineering process easy to iteratecasd in future pro-
cesses.

The purpose of this report is to introduce FAST process anshtiwv how
FAST can be applied in industrial companies. As an exampéppfying FAST,
mobile terminals are considered. The example presents AS¥ Buits in devel-
oping different terminals that have variant properties asdrictions.

This report proceeds as follows. Section 2 gives an ovenabaut FAST
process, and Section 3 considers the principles behing R&Xt three sections
describe the activities of FAST: Section 4 concentratesanain qualification,
Section 5 on domain engineering, and Section 6 on applicatgineering. Sec-
tion 7 introduces PASTA model, and Section 8 depicts an elawipapplying
FAST process. Finally, Section 9 concludes the topic by @nng FAST to
other software engineering processes.



2 Overview of FAST

FAST (Family-Oriented Abstraction, Specification, andn&iation) is a devel-
opment process for producing software in a family-orientedy. It separates
product-line engineering process into two main parts. Qep soncentrates on
providing the core assets including the environment fodémgnting each prod-
uct. The other step utilizes the environment in the prodmadf different software
products belonging to the family.

Software engineering in an efficient way is usually difficu®@n one hand,
careful engineering in software process is essential tobles ta meet the cus-
tomer requirements. Thus, software products should bableliand easy to use
and maintain. On the other hand, markets and competitotsreeppid produc-
tion of software. These two requirements, rapid productiod careful engineer-
ing are difficult to achieve at the same time. However, prodine engineering
via FAST tries to resolve the dilemma and to achieve both tdeadsy

FAST process can be divided into the following subproce&desvn in Figure
1):

e domain qualification to identify families worthy of invesem,
e domain engineering to invest in facilities for producingiiy members,

e application engineering to use those facilities to prodiaceily members
rapidly.

These subprocesses are considered in more detail in Sedtidnand 6.

Besides the division into subprocesses, FAST distingsibeéveen activities,
artifacts, and roles. Each subprocess (shown in Figurerigisis of different ac-
tivities, produces different artifacts, and are perforrbggeople acting in differ-
ent roles. However, these two divisions are not totally sspd. FAST activities
actually comprises the aforementioned subprocesses.

This section considers the division into roles, artifaeisgd activities. Each
item of the division is described in an own subsection.

2.1 Roles

When adopting FAST, the organization should have two diffegroups of en-
gineers: one for domain engineering and the other for agjpdic engineering.

4



Feedback

______ > Qualify Domain

Engineer Domain

— | Analyze Domain

l

-1 Implement Domain

Application Engineering
Environment

Engineer Application

- Model Application

l

Produce Applicatiorn

l

Deliver and Support Applicatior|1

Iterate
-— =1

C Applications )Y

Figure 1: FAST process pattern [WL99]



Domain engineers take care of the evolution of the family @matrol that the in-
vestment in the family stays paying. Application engingersduce family mem-
bers. They are in contact with customers to be able to satisiy requirements.

Project Manager
Domain Manager
- Environment Engineer
L~ Domain Engineer
Application Manager
> Application Producer
— Application Engineer
L~ System Maintainer/Supporter

Figure 2: FAST role hierarchy [WL99]

FAST roles are shown in Figure 2. The roles are arranged ihterarchy that
can be a basis for an organizational hierarchy.

2.2 Artifacts

Like roles, also artifacts are presented as a hierarchyHigeee 3). Each artifact

consists of the subartifacts below it. For example, an appbn consists of an
application model, application documentation, and apgibcn code. Note that
there are a connection between the Figures 2 and 3. Perspmsgble of the

domain part produce environment artifacts, while applicepersons take care of
artifacts concerning application.

Entry and exit conditions used in PASTA model (considere8egtion 7) are
defined in terms of artifacts. As an example of such a conditize design of an
application modeling language is not possible until comatibnanalysis report
has been reviewed. However, these conditions are not shrofigure 3.

2.3 Activities

Like roles and artifacts, also activities are shown as aahadry in Figure 4. Note
that many activities and artifacts that are part of FAST pssccan also belong to

6



Family Artifact

— Environment

— Domain Model

—~ Economic Model

> Commonality Analysis
Decision Model

Family Design

Composition Mapping
Application Modeling Language
Toolset Design

Application Engineering Process
L~ Domain Implementation

> Library

IR

— Generation Tools

— Analysis Tools

— Documentation

L~ Application
Application Model
Application Documentation
Application Code

Figure 3: FAST artifact hierarchy [WL99]



other software development processes. However, FAST alstaios parts that
are unique to this particular process. One of such parteidelign of the family.

FAST

- Qualify Domain

-~ Engineer Domain

— Analyze Domain

— Define Decision Model

— Analyze Commonality

— Design Domain

— Design Application Modeling Language

— Create Standard Application Engineering Process
L Design Application Engineering Environment

> Implement Domain

I~ Implement Application Engineering Environment
L~ Document Application Engineering Environment
— Engineer Application

E Model Application

Produce Application

Provide Delivery and Operation Support
— Manage Project

L~ Change Family

Figure 4. FAST activity hierarchy [WL99]

Some activities may proceed concurrently while some othexg require a
particular order. For example, domain engineering andiegmn engineering
can be performed in parallel. Domain engineers are ablefitzerparts of appli-
cation engineering environment at the same time when &t engineers are
using other parts of it. PASTA model (described in Sectiosp8cifies the order
of FAST activities more precisely.

Figure 1 depicts the three main activities that will be cdased in the sequel
of this report in more detail. However, Figure 4 shows also amditional ac-
tivities: managing a project and changing a family. Projeainagement means
managing the work concerning identification and satiséaotif customer require-
ments. Management is based on application engineeringoament. It includes

8



normal management tasks such as scheduling, allocatidgnanitoring. Chang-
ing a family means controlling and managing the evolutiorthef family. It in-
cludes both allowing changes to the family members and ngatkia generation
of the members easier and more efficient. For both of theski@ul activities,
PASTA model provides no detailed guides. Instead, eacmaagton can apply
their own policies in these activities.

Together the three hierarchies (see Figures 2, 3, and 4jyclanat people
acting in different roles must do, what they must producel when they must
produce it. There is an evident relationship between thafthies. For example,
a domain engineer is responsible for domain engineeringeaodilices a domain
model.

Note that the figures show some levels of details for each itdowever, each
item could be viewed in more or less detail when necessary.



3 Principles of FAST

This section introduces the assumptions behind FAST andiéas and methods
FAST relies on. Finally, the most important ideas are cargid in more detail.

3.1 Assumptions
FAST is based on three assumptions or hypotheses listed:belo

e redevelopment hypothesis,
e oracle hypothesis,

e organizational hypothesis.

According to the redevelopment hypothesis, software dgveént is very of-
ten redevelopment. In many cases, it consists of creatingvaeations on ex-
isting software systems. Usually, there are more simiéarithan differences be-
tween variations.

According to the oracle hypothesis, it is possible to prettie changes that
are likely to concern a software system. Future changes eaetved from ear-
lier changes. For example, software engineers familialn vatephone switches
can have the experience that different customers will wanse different billing
algorithms.

The organizational hypothesis concerns both software afteare develop-
ment organization. Each of them can be organized to takeaiotount of pre-
dicted changes. Predicted changes can be made indepgnokather type of
changes. The purpose is to make predicted changes refetociyinimal subset
of system modules. For example, software for telephonebestcan be designed
such that billing algorithms can be changed independeffitlyeoother system.

Together these assumptions suggest that it is importanusefl to find a
family among similar programs. The commonalities betwesresal programs
reveal a family, while their variabilities show the boundarof the family.

3.2 ldeas and methods

There is a variety of ideas and methods concerning softwagameering. FAST
is based on some of the most succesfull ideas that are listed/b

10



e predecting expected changes to a system over its lifetime,

e separating concerns,

e designing for change using abstraction and informatiombid

o formally specifying and formally modeling systems,

e creating application modeling languages for specifyingifa members,
e composing software from adaptable, reusable components,

e designing process and product concurrently,

e building compiler compilers,

e using template-based reuse,

e restricting variability to gain efficiency.

FAST integrates the above ideas and methods into a proceevétop tools
and assets that are applied to produce the members of a fantily first three
ideas are key to FAST, and thus, they are considered in mdaé ohethe follow-
ing subsection.

3.3 Focusing the key ideas

Abstraction is related to variability. With abstractiom,is possible to provide
several variant ways to implement a task. Such a task carmbexédmple, com-
munication with a device. The decision about the commumnatvay can be
hidden by the abstraction. The abstraction provides amfatte to the users to
access the services, but conceals the details of how toot@ndievice.

Figure 5 shows how abstractions are used in the FAST pro&ssain en-
gineers create abstractions to be used in designing theath modeling lan-
guage and in designing the family for the domain. Abstraxtioan be used to
create a library consisting of adaptable components. Tbesgonents can be
exploited in generating family members.

Information hiding uses abstractions to conceal thosesaets that are most
likely to change. An information hiding module provides dostract interface via
which users can refer to the services of the module. Theatdtistiterface sep-
arates the concern of which services the module offers ftwrconcern of how

11



Eng

Domain

ineer

Creates

Abstractions

Are used to design

Application
Engineer

Uses

Are used to create

Family

Design

Is used to define

Standard Library

e

Contains

N

Implementation| ...

Implementation

Is a component of

Application
Modeling
Language

Is used to specify

Family Member

Figure 5: Use of abstractions in the FAST process [WL99]

12



those services are implemented. Information hiding is ts@dplement the vari-
abilities of a family.

Separation of concerns [Aks96, HL95] means division ofwgafe into parts
according to its different aspects. In addition to the basgorithm, a program
may have other concerns such as synchronization or reald¢onstraints. Sepa-
ration of these concerns is important, because it suppeuserand management of
variabilities between different programs. Separationasfaerns has been obeyed
in aspect-oriented programming [K1196]. Both of these concepts (separation of
concerns and aspect-oriented programming) are relatetbtlugi-line architec-
tures, because features needed in different software pi®dan be composed of
different sets of aspects [Gri00Q].

Change prediction can be based on earlier changes. Theeh#sigry of a
software family is a starting point for prediction. By examg past changes, it is
possible to find such parts of the software that are most @féem the targets of
changes. These parts are important from two aspects. Onamtk they are the
places where new features are implemented. On the other treydare bottle-
necks where the most part of the change effort has been @uzest

In addition to the earlier changes, information about clegmgdiction can be
obtained from the people whose business is to predict madaet and technolog-
ical changes. Moreover, people who have worked a long tintle the software
and are experts of the domain can provide valuable infoonati

13



4 Domain qualification

Domain qualification analyzes a software family from an exoit perspective.
It estimates the number and value of family members and tsid@produce them.

According to FAST, investment in domain engineering to find @ product
family pays back in application engineering when produdamgily members (see
large arrows in Figure 7). Figure 6 depicts this assumptibshows two lines
describing two situations. LinA corresponds the situation with no domain en-
gineering. In this case, the cost of producing a new membehefamily is
constant, denoted bg'r. (If the cost of different products variate§y can be
considered the average cost over the products of the farinlgach case, the cost
of producingN family members isV x C'r.

Line B shows the situation with domain engineering. Lebe the cost of
domain engineering. After this investment, producing aif@member is more
efficient, denoted by’r. In this case, the cost of produciig family members
isI + N x Cp. In order to get the domain engineering profitalilg, should be
less thanC7. If this holds, saving per family member (without consideri) is
Cr — Cr. For N family members, saving i8/ « (Cr — Cr). To make domain
engineering payingy should be large enough such that N x (Cr — Cr). For
example, in Figure 6, payback occurs after producing traeely members.

The lines shown in Figure 6 are different for different donsai For some
product families, investment in domain engineering presidireater degree of
automation in the production of family members. Thus, ifiedént domains, the
payback point may occur after producing different amouriaofily members.

Besides variation in different domains, automation vaitedifferent phases
in application engineering. For example, a part of apphbcaengineering con-
sists of interaction with the customers to determine theireqents for a family
member. These parts cannot be automated. However, somebtses of appli-
cation engineering enable automation. Moreover, everearty little automation
is paying because careful domain engineering makes theidonwae structured
to accomodate changes.

Domain engineering still has a risk to failure. It is possitilat the investment
does not provide better adjustment to changes than any sdfisvare develop-
ment technique. However, in unsecure situations, investroan be increased
in several steps. The ability to predict changes can betl&grexperience, and
change predictions are based on earlier changes. Firsawitle experience, it is

14



(A) Without Domain Engineering

1%
S
fzj 407 (B) With Domain Engineering
@©
= \
g 3Cr Paypack Point
®)

2Cr

Cr

1 2 3 4

Number of Family Members

Figure 6: Cost of producing family members [WL99]

reasonable to put only a low investment on the productioifitias for a family,
and see how well the predictions come true. When confidendkeoprediction
ability grows, it is possible to return along the feedbaakpan Figure 7, and in-
crease the investment in the production facilities. InWag, the system becomes
more robust even to unpredicted changes.

15



Investment

Payback

Domain Engineering:

Define family and develop
production facility

Application Engineering
Environment:

Application Modeling Language
+
Tools
+
Application Engineering Process

Application Engineering:

Feedback

Produce family members

C Applications D)

Figure 7: FAST process with investment and payback [WL99]

16



General Needs of
Business Line

Feedback from
Application ———{ Analyze Domainj«——

Feedback from
Customers

Engineering

Domain
Model

Implement Domain|

/

Application
Engineering
Process

Application
Engineering
Environment

Application
Engineering

Figure 8: Domain engineering process [WL99]

5 Domain engineering

Domain engineering studies how the products of the samdyfatmare the com-
mon basis and how they differ from each other [ADB]. In addition, domain
engineering develops and acquires the core assets of theghime [BFG 00)].

Domain engineering can be divided into domain analysis amdain imple-
mentation (shown in Figures 1, 4, and 8). The result of doraaalysis is domain
model (compare Figures 3 and 4) which also acts as a basierfoaid implemen-
tation. This can be seen in Figure 8.

17



5.1 Domain analysis

Domain analysis provides different approaches. It can eoinate on describing
what is inside the domain, what is the boundary of the donmimhat is outside
the domain [Sch00]. The first case describes the items timsticate the domain,
or identifies other domains that together form the actual alonidomains can
have sub-domains). The second case describes the rulesdudion and exclu-
sion. In addition, structure and context diagrams can beuymed both to describe
the boundary of the domain and to show the relation of the doinahe outside.

The purpose of domain analysis is to produce a domain mad&AST con-
text, domain model means a specification for the applicatiogineering envi-
ronment. In more general, domain model is a precise reptasam for spec-
ification and implementation concepts [PA91]. It includesm@epts concerning
system specification, plans to map specification into code rationales for the
specification concepts, and their relations to the implegatem plans. Thus, do-
main model captures common knowledge about the domain aégyteusing
the components of the domain.

FAST process divides domain analysis into subtasks (asdesdone in Fig-
ure 4). Similarly, the artifacts produced during domainlgsia (i.e. domain
model) can be divided further (see Figure 3). One of thestaetd, economic
model, is considered in Section 4. Commonality analysispresas identification
of both common and variable aspects among family membersm@nality
analysis is considered in more detail in Subsection 5.1.1.)

The decision model of domain model defines the decisionsatihapplication
engineer must make to specify and produce a new member oathiyf Deci-
sion model also determines the order in which the decisibpnsld be made to
produce an application. These decisions can be, for exactplesing a value for
a parameter described in commonality analysis.

A part of domain model is an application modeling languag®l(Athat can
be designed either via compositional approach or via canppproach. (Appli-
cation modeling language is considered in more detail irs8ciiion 5.1.2.)

The purpose of domain model is to specify an applicationregging environ-
ment and a process for using this environment to model anergenapplications
(see Figure 8). This specification acts as a basis for theamment to be devel-
oped during domain implementation.

18



5.1.1 Commonality analysis

One task of domain engineering is to consider the simi&mriéind differencies be-
tween the members of the product family. This aspect of doreagineering is
called commonality analysis, although it covers also atersng the variabilities.

Commonality analysis is the basis for designing a familygatomain). It
identifies and makes useful the abstractions that are contonalhfamily mem-
bers [Wei98]. There are two main sources of abstractiomiteslogy and com-
monalities. Precise terms concerning product-line aechire make communica-
tion among developers easier and more accurate. As anoilmeesof abstraction,
commonalities are actually assumptions that are true fdamiily members. Be-
sides the commonalities, it is important to consider valiteds among family
members. Variabilities provide a way to prepare for potdmminanges by pointing
those decisions concerning family members that are likelglter over the life-
time of the family.

The result of commonality analysis is commonality docunmtsisting of
the following sections [ADHO00]:

Overview
describes the domain and its relation to other domains.

Definitions
provide a standard set of technical terms.

Commonalities
consist of a structured list of assumptions that are truevery member of
the family.

Variabilities
consist of a structured list of assumptions about how famiynbers differ.

Parameters of variation
consist of a list of parameters that refine the variabilitedding a value
range and binding time for each.

Issues
form a record of important decisions and alternatives.

Scenarios
are examples used in describing commonalities and vatiabil

19



Commonality analysis can be used for several purposes BMeid can be
used in the further phases of the FAST process, for examplggsigning a do-
main specific language and then in generating code and dotatios from the
language specification for each product. It serves as a tmasasfamily architec-
ture and as reference documentation. Commonality analgsiglso be exploited
in reengineering the members of a product family. It can leel@s a training aid
for new project members. In addition, a plan for evolutiortteg family can be
derived from commonality analysis.

5.1.2 Application modeling language

Application modeling language (AML) is a key part of domainahel. It is called
modeling language because the specifications written itatiguage should be
models. They should actually be abstractions of applinatioThe application
engineering environment enables analyzing the specditatvritten in AML. It
also provides ways to generate code from the model, or irr etbels, to map the
abstraction into an implementation.

FAST process has two approaches for generating family mesrfbam the
AML: compilation and composition. The composition approaceates a modu-
lar design for the family and implements each module as alampin addition,
a composer is needed to generate family members by composingleted tem-
plates. The family specification determines the templaté®tused for a particu-
lar family member.

Composition approach requires family design (or domairmge@shat is com-
mon to all family members and acts as a basis for generatmgyfanembers. In
addition, composition mapping between the AML and the famésign is needed
in generating family members.

Compilation approach requires building a compiler inchgda parser for the
AML, a semantic analyzer for the parsed form, and a code gémerThe gener-
ated code could be high-level (such@®r Java), machine code, or any other.

The decision between the approach depends on the domainsoRw do-
mains, the compilation approach is more suitable, whilethrers, the composi-
tion approach may prove to be more natural. In addition, Xpegence of domain
engineers can be critical. If the domain engineers have perence in imple-
menting a compiler, that approach could be too complicated.

20



AML is designed and implemented by domain engineerings aed by ap-
plication engineers. However, application engineers metdknow the approach
applied in the AML or other internal decisions made by donaigineers.

5.2 Domain implementation

As the second part of domain engineering, domain implenientaevelops or
refines an environment that satisfies the domain model. Tivisament should
also support the application engineering process. If tloseh AML approach is
compositional, it is necessary to implement the family gescomposition map-
ping and a composer. In the opposite case, using a compeoagh, it is neces-
sary to implement analysis tools and a compiler.

Domain implementation includes providing the toolset foats the applica-
tion engineering environment. This toolset comprises lgatheration tools and
analysis tools. Generation tools are used to generate cmbldarumentation for
applications. Analysis tools are used to analyze apptinathodels to help the
application engineer validate the models. Documentatmrcerning both kinds
of tools is also produced.

Domain implementation covers creating a library of tengsalt is needed in

implementing code and documentation for applications. i#aithl documenta-
tion is required to understand how to use the applicatiome®ging environment.

21



6 Application engineering

Application engineering can be performed parallel with demengineering. Do-
main engineers can refine parts of the application engimgemvironment at the
same time when application engineers use other parts ohthament to model
an application.

Application engineers use the production facilities (&&tlon engineering
environment) provided by domain engineers to produce egjpbins of a family
quickly. The applications should satisfy customer requiats, and thus, applica-
tion engineers are connected to customers either directliamther people such
as salespeople or system engineers. Customers may bea¢xtemmternal of the
organization, and requirements can be established by faonéract or informal
discussion.

Application engineering is an iterative process (see E@)r The customer
identifies or refines the requirements for the applicatiomerTthe application
engineer represents the requirements as an applicatioelmadtually, she can
provide a number of different models for a family member, andlyze them in
different ways and refine them several times to be sure teahthdel corresponds
to the requirements of the customer. According to the apptio model, the ap-
plication engineer generates a deliverable set of code andndentation. The
customer checks the received application. This may inctadieng the applica-
tion and viewing the result of analyses made by the apptinagngineer.

If the customer is not satisfied with the application, theuregments are re-
fined and the whole process starts from the beginning. Tlteet presented in
Figure 9 terminates when the customer accepts the applicatiis sufficiently
dissatisfied with the process to stop participation.

Application engineering process produces artifacts prtesien Figure 3. Ap-
plication model is created on the basis of the applicatiayrezering environment
by using AML. Application engineers use AML to specify andguce family
members. The application engineering environment supjpoilyzing specifica-
tions written in AML. AML is also needed in generating coderfrthe application
model.

In addition to application model, application engineerprgcess produces
code for the application. The code is generated from theiegimn model by
using generation tools provided by domain engineers. Taks facluded in the
application engineering environment can also be used iergéing documenta-

22



Customer
Requirements

Application
Modeling
Language

Analyze Requirement

U7

Application
Model

Refine/Validate
Model

Generation and
Analysis Tools

l Feedback Domain

Engineering

Generate Code
and Documentation

Deliverable Code
and Documentation

Customer

Figure 9: Application engineering process (simplified frpiL99])

23



tion for the customer about the application.

24



7 PASTA model

To describe FAST process precisely, a special model calh&TR (Process and
Artifact State Transition Abstraction) can be applied [VRLO9PASTA provides a
systematic way to describe software engineering procestidplarly FAST pro-
cess). Thus, it supports communication and iteration optbeess.

Software engineering process can be considered as a seqakdecision
making activities. These decisions concern requiremehtheosoftware, pro-
grams implementing the requirements, required propestiel as program struc-
ture, interface, and performance. In addition, decisidomuaihow to verify that
the programs meet their requirements are needed. PASTAlmgomkes making
these decisions. It informs of what decisions softwarereegyis can make, when
they can make them, what the results mean, and how the retwltdd be pre-
sented.

Describing FAST process means describing the three aspettacts, activ-
ities, and roles. Application and domain engineers prodieseral artifacts such
as requirements documents, code files, and organizatiatschBhese artifacts
contain the various decisions made. To produce thesedstifangineers perform
different activities, and play different roles. Descripithese aspects produces a
process model.

However, PASTA model or any other formal model cannot descsoftware
development completely. For example, a total ordeding eféttivities is not
provided. PASTA model only shows at different points a seddivities that can
proceed next. The engineers make selection among thesgadilte activities.

7.1 Elements of PASTA model

PASTA model consists of state transitions and their abstras It contains the
following elements:

Role
represents responsibility, assignment, authority, okkworce. It indicates
who can perform an activity.

Artifact
represents a final or intermediate work products or the m&tion needed
to produce it. It indicates what must be produced.

25



Artifact state
is the condition of the artifact. Artifacts change statecadg to the ac-
tivities addressed to them. State changes indicate thege®¢pward com-
pleting the artifact.

Process state
is a set of activities performed in a particular situatioheBituation is de-
fined by an entry condition that must be satisfied before tlheqss state
is entered. An exit condition specifies the effect of the pescand deter-
mines transition out of the process state. The entry ancceridlitions are
specified in terms of artifact states. Process states camgamined into
substates. They indicate what must be done to make progvhss, it can
be done, who can do it, and what the criteria are for comgetimactivity.

Operation
is an activity to be performed on one or more artifacts. Ojpmna form the
lowest level of the process state hierarchy, they are nohdurorganized
into subactivities. Operations indicate what must be dareveho can do
it.

Analysis
IS an activity that provides information about the statehs process, its
artifacts, and the roles of the participating people. Asefyindicate what
progress has been made, how fast it has been made, whatcestave
been used, and what the quality of the artifact is.

Relation
shows relationships among process elements. In addititwittin rela-
tions between artifacts, activities, and roles, other sppeelationships may
be needed. For example, a completeness relation says tlesigndloc-
ument is not complete until the corresponding requiremdontsument is
complete.

7.2 State machines

PASTA model represents decision-making activities asestachines that can
execute in parallel. States correspond to activities peréo by people acting in
different roles. This kind of state-based model enablesesgmting concurrency
and backtracking. Although some FAST activities can begreréd in parallel,
this does not hold for all activities. In these cases, thewodl the activities is
specified with entry and exit conditions. They determine nvha activity can

26



begin and what conditions must be true when it terminates.

FAST activities (see Figure 4) correspond state machinés. ihole FAST
process is divided into five substate machines: qualify doyeamgineer domain,
engineer application, manage project, and change famitgte$ composed of
substates are callembmposite statesvhile elementary statelsave no substates.
Elementary process states consist only of operations aalysas.

Like activities, also artifacts can be represented as staiehines. Artifact
states can be, for example, as follows:

Referenced
An artifact has been referenced somewhere in the process, itfs needed
and must be created if it does not exist.

Defined_and_Specified
The contents of the artifact have been defined and specified.

Reviewed
The artifact has passed a review and has been accepted.

To identify clearly the names of states, the words of thenwatitten in differ-
ent style and connected with underscores. For exarDi@déned and_Specified
the name of an artifact state. Table 1 shows some samplaates;isorresponding
artifacts, and artifact states.

7.3 Describing PASTA model

PASTA uses tree diagrams (Figures 2, 3, and 4), forms (Tgblen2l state tran-

sition diagrams (Figure 10) to describe process elememsng; represented as
tables, define process states, artifacts, and their sRtesess state forms include
state entry and exit conditions, state transitions, andfeFations and analyses
that can be performed in the states. Transition diagrams ginocess state ma-
chines and artifact state machines.

Table 2 is the process state definition form for the proceste stalledQual-
ify_Domain Figure 10 shows the corresponding process state tramsii@gram
with subprocess states. For example, the entry to subGttteer Datas a func-
tion of the artifactEconomic _ModeWwhen its artifact state iReferenced

27



|ON

od

Decision Artifact States

Is the family economi- Economic Referenced

cally viable? model Started
Reviewed

What are the membersCommonality = Referenced

of the family? analysis Standard_Termilogy Establishe
Commonalities _Established
Variabilities Established
Variabilities_Parametrized
Reviewed

How should fam- Application Commonality _Analysis_Reviews

ily  members  be modeling Language_Type_Identified

described? language Language Specified

How should the soft- Family design  Referenced

ware for the family be Defined_and_Specified

organized to take ad- Reviewed

vantage of both com-

monality and predicted

variability in family

members?

What is the implemen- Code for the Referenced

tation of a component component Designed

of the family design? Reviewed
Tested

What progress towardReport of mile- Referenced
engineering a domainstones achieved Delivered

and
used

has been made?

resources

Table 1: Sample decisions, corresponding artifacts, afdcrstates [WL99]

28



in
i
it

Name Qualify_Domain

Synopsis Domain qualification produce&conomic_Modeldeter-
mining the economic viability for a domain. A dom
is economically viable if the investment in domain en
neering is more than repaid by the value obtained fromn

Main role Domain_EngineeiDomain_Manager

Entrance Condition

state-ofEconomic_ModgkReferencedr
state-ofChange_ReportDomain_Change_Authorized

Artifact list

Economic_Model

Information artifacts

Environment

OPERATION LIST

Name Gather_Data

Synopsis Gather the data needed to decide whether a domain exists
and is worth engineering.

Name Analyze Data

Synopsis Create anEconomic_Modefor the domain that can be
used to evaluate the cost and time savings from applying
domain engineering.

Name Reject

Synopsis The Economic_Modehas been created and evaluated [for
the domain. It is not worth investing in the domain.

Name Accept

Synopsis Based on the evaluation of tHeconomic_Modefor the
domain, it is worth investing in the domain.

Exit condition state-ofEconomic_ModgEReviewed

Informal specifica; Gather data on the expected family members, current|cost

tion and time to develop the members. Characterize cutrent

process to develop family members and identify poter
savings in time and cost from automation. Create an ¢
nomic model that shows the difference in cost and t
between current process and domain engineering. Us
model to decide whether the investment in domain e

tial
2CO-
me
e the

Ngi-

neering is worth the savings in cost and time.

Table 2: Process state definition form fQualify _DomainfWL99]

29



Economic_ModégReferencefd

Gather_Dat3

Economic_Modégtarted

Analyze Data

Economic_MonRevieweql/ Yconomic_ModéReviewedi

Reject Accept

Family Artifacf Domain_Rejectdd Family Artifacf Domain_Accepted

Figure 10: Process state transition diagramQomalify _DomainfWL99]

30



7.4 Creating PASTA model

PASTA model need not be created as a single step. It is pedsildreate first a

simple version of the artifact, activity, and role trees angplement them later.

After iterating and refining each tree, a short synopsisgated for each tree node.
These synopses act as a basis for the definition forms féacigj process states,
operations, analyses, and roles. During the creation psotke consistency be-
tween different descriptions are checked continuously.

When considering the creation of the PASTA model, necessaps in more
detail are listed below:

Decide which artifacts are to be created, modified, and useduting the pro-
cess.

Artifacts can be organized into subartifacts. For exampléocument can
be organized into sections, and code into modules. Arsifant their sub-
artifacts are represented as a tree hierarchy. Each aitiftiee tree is de-
scribed in detail using a table.

Determine the states of the artifacts and the transition amog them.
A state machine diagram is constructed for each artifact.

Determine the states of the process.
States can be organized into substates. For example, andstaig could
consists of a modular design state and an interface desitg States and
their substates are represented as a tree hierarchy. Edehrsthe tree
is described in detail using a table and the correspondiaig shachine
diagram. They also describe sequencing and transitionsiguthe states,
which is not shown in the tree.

Determine the operations and analyses that can be performeith each state
of the process.

Each operation and analysis is described using a table.

Determine the roles of the people participating the process
Roles are organized in a tree hierarchy. Each role in theisrdescribed
using a table.

Determine the relationships among the artifacts.
Each relationship is described using a table.

The above steps are meant to guide process modeling. Inieaghaithough
with the same participating people, the process will mogtexly be different.

31



PASTA provides flexibility in creating and performing theopess in different
ways. Each aspect (such as an artifact, activity, or role)bemdescribed in any
amount of details. When the trust in the process and thengiliess to invest more
effort in process modeling increases, the process can logeiloled in more detail.

32



8 Mobile Terminal Example

This section shows how FAST process could be applied in a oloamecerning
mobile terminals. The domain in question is first introduceédter that, each
phase of FAST process is considered and applied in thiscpitidomain. Fig-
ure 1 depicts FAST process in general cases. Figure 11 édefiom Figure 1)
shows FAST process in the mobile terminal domain.

8.1 Overview of mobile terminals

The chosen example is derived from [Moi01] concerning aveai platform for
mobile terminals. Mobile applications or wireless apgdimas can be used in a
wireless terminal like a mobile phone or a PDA (personaltdigissistant). Ter-
minals typically communicate wirelessly with other dewcér example other
terminals or servers. A wireless application is usuallyceted partly outside the
terminal. These new kinds of terminals are small but stiké@fve. They are
provided with colour displays and powerful processors. yT¢ten show moving
video pictures, 3D graphics, and effective sounds.

Application programming for mobile terminals is differdrmm conventional
program development. Memory requirements are typicallyenstrict. Displays
vary in their size and shape from one terminal to another.bKayd and button
equipments differ from each other. These differences recapplication cus-
tomization according to the properties of each device.

Mobile terminals typically have an open operating systenctvallow anyone
(in addition to the producer of the device) to develop a@pians referring to the
features of the operating system. Thus, the applicationsbeamade powerful
because they can directly use the properties of the undgriyevice. However,
such applications require large modifications when pottiregn to other devices.

8.2 Domain qualification

Domain qualification considers how useful and profitabls iii follow product-
line convention in software engineering process (see Eigdy. In the mobile
example, turning into a common programming platform makesdevelopment
of different mobile applications easier. The main purpsde make programming
tasks consistent with each other such that they do not depenide underlying
device. However, simplification of the application devefegnt can be seen as a

33



Feedback

————— > Qualify Mobile Domain

I
¥
Iterate

F—_————

Engineer Mobile Domain

— | Analyze Mobile Domain

l

- Implement Mobile Domain

Engineer Mobile Application

¥

Model Mobile Application

l

Produce Mobile Applicatior

l

Deliver and Support Mobile Applicatio

Iterate
L |

=

Figure 11: FAST process for mobile domain

34



way to reach also financial advantage.

The common programming platform tries to solve the confletween the
following aims. On one hand, it is preferred to take advamtafthe special
properties of each terminal. On the other hand, it is deshlatithe same appli-
cations without any modifications can be run in differenirtieals. The common
programming platform provides a layer above the detailegp@nrties of different
terminals. However, it enables customization of the apgibm for each specific
terminal.

8.3 Domain engineering

Domain engineering can be divided into domain analysis anakdn implementa-
tion (see Figure 11). Domain analysis comprises commagraatialysis which, in
the particular mobile example, covers the identificatioditierent operating sys-
tems. In this example, supported operating systems areeBRCKEPOC, Linux,
Palm OS, and Windows. Terminals may have variant propestiel as memory
resources and data communication. Supported devicesaarexdmple, PDAs
and smart phones.

Besides commonality analysis, domain analysis coverslyaeaisign. In the
mobile example, applications are typically based on cdlgsmver architecture.
Terminals act as clients using the services of servers. Aticgtion can be ex-
ecuted both in the terminal and in the server. The progranahan application
can decide which part of the code is run in the terminal anadlwpart is executed
by a server. This division may depend on the restrictiongftérént devices. For
example, it is possible to give for an ineffective device enserver time than for
a more effective one.

The other part of domain engineering is domain implemeortatvhich pro-
vides tools and an environment for developing applicatioimsthe mobile ex-
ample, the environment is divided into following two parevelopment library
supports application development, whdervice platforms meant for operators
and service providers.

The development library has a layered architecture congisf three layers:
operating system abstraction, system services, and medikeas. The lowest
level, operating system abstraction acts as an adapteetsetivices of the ac-
tual operating system. It provides operating system sesvguch as memory
management, file system, threads, and synchronizationtei8yservices of the

35



middle level raise the abstraction level of the services toyviding useful and
more portable concepts such as network channel and resotttowever, the ap-
plications using the services of this level need not caraibbifferent terminals
supporting different network channels. Media servicesheftbp level provide
solutions for specific problems. The solutions are custethibr each different
terminals. Examples of these services are packaging aratkaging video pic-
tures.

Domain implementation provides an environment for develgfoth client
(terminal) and server applications. The purpose of theiteahenvironment is to
provide a common way to program different terminals. Thiushould not be nec-
essary to rewrite the program for different terminals. Té®e purpose concerns
client environment, too. However, there is less variabiimong the operating
systems than in the terminal environment. When developisgyeer, the restric-
tions such as memory requirements are less severe thandasbef clients. Both
of these environments are as similar as possible to makaytfea the users to
learn the environments.

In addition, domain implementation provides necessargkb@ment tools for
compiling, linking, and automatic processing of appliocatdata. Tools are also
needed when starting to support new devices.

8.4 Application engineering

The purpose of domain engineering is to produce an apit&ngineering en-
vironment. The environment created for developing mobgpliaations is in-
troduced in the previous subsection. Using the environnsectlled following a
programming moddjsee Figure 11). The programming model provides a uniform
environment to develop programs for different terminalppkcation engineering
uses the programming model to implement mobile application

Application engineering can be divided into modeling, praidg, and deliv-
ering and supporting applications (see Figure 11). Appboamodelling con-
centrates on customer requirements. In the mobile exartienost important
requirements are reliability, reactivity, and securityeliRbility is important be-
cause the users prefer and require safe applications ommwieg can rely even in
critical situations. Reliability can be achieved by actearogramming conven-
tions and version control.

Reactivity means that the response time is as low as pos$telgponse time

36



is low enough if the user cannot notice any delay. Time-corisg services can
be provided as asynchronized services. In such servicgseses can be left to
wait for service and immediately continue normal procegsifihe reply to the
request may take for a while and it will be handled as soon@mites. However,
it is essential that the waiting time is not wasted idly.

Security is important because an application in mobile teafs can directly
use the device instructions. Thus, it would also be possibfemove or read the
user’s personal data or send it to other devices. To be s #ie security of
the system, the user should be able to control the prograrne toaded in her
terminal.

Producing an application covers the basic programmingtasglemented by
following the programming modelC++ has been chosen as the implementation
language. Specidl++ classes are used to provide a common interface for dif-
ferent terminals. These interface classes are implemerstetbstract classes and
used via inheritance and dynamic binding. They hide thesdfices between
terminals. For the hiding purpose, macros &helr templates can be used, too.
Some of the compilers of the devices do not support excepaodling. Thus, for
handling exceptions, a specific way imitatifg+ exception handling has been
implemented.

Delivering and supporting a mobile application has its gfecharacteristics.
Delivering may require different arrangements such asraotg with phone oper-
ators that offer delivering services. In addition, netwodkinections are needed.
These characteristics have been considered in the senatferm to make the
mobile applications easily available for customers.

The described system with its development library and @nogning model is
currently in an initial phase. However, as an applicatioanegle, a multi-player
game has been produced to be able to demonstrate the syst@ngaime has
proved that the system could be successful.

8.5 Conclusions

The described example is not originally processed via FA®Tually, the exam-
ple is afterwards tried to accommodate to FAST, or tried tirmei how FAST
could be applied in this particular situation. However,ngkinto account the de-
ficiences of the situation, FAST fits to the chosen examplpr&ingly well. The
subprocesses are rather easy to find even afterwards. HQWA&T has not been

37



applied in a detailed way. The purpose was to identify onéy/rrein phases of
FAST process.

The example does not provide any explicit application miodelanguage.
However, the programming model can be considered as an AMus,Tin this
particular example, AML is a restricted group Gf+ programming concepts.
The restriction is formed according to the restriction @ thfferent terminals.

This example concentrates only on the basic FAST proces&TFktifacts
and roles have not been considered. They are importantgdBAST, but not so
essential afterwards. PASTA model has not been taken ictouat, neither. Be-
cause it was not possible to observe the process duringgsioget, it is difficult
to follow PASTA model. PASTA model provides advice during tbrocess. It is
not meaningful to find the steps and selections afterwards.

38



9 Conclusions

Dividing the product-line engineering process into domamngineering and ap-
plication engineering is not unigue to FAST. Instead, theme several process
models using similar division. However, some of the methoaige first concen-
trated on domain engineering, and they are afterwards @stewith application

engineering.

FODA (Feature-Oriented Domain Analysis) [KCHO] considers the features
of similar applications in a domain. Features are cap#&sliof the applications
considered from the end-user’s point of view. Featuresrcbwéh common and
variable aspects among related systems. They are divittechemdatory (or com-
mon), alternative, and optional features. FODA includdéfednt analyses such
as requirements analysis and feature analysis. It produdesain model cover-
ing the differences between related applications. FODAIrsantly a part of the
model-based approach of domain engineering [Sof00]. Tgpsaach covers both
domain engineering and application engineering. The doreagineering part
consists of domain analysis (FODA), domain design, and domaplementa-
tion. In addition, FODA is further extended into FORM (Feaat®riented Reuse
Method) [KKLL99] to include also software design and impkmation phases.
FORM covers both analysis of domain features and using tfesgares to de-
velop reusable domain artifacts.

ODM (Organization Domain Modeling) [SCK6] mainly concentrates on
the domain engineering of legacy systems. However, it caapipéied to the re-
quirements for new systems. ODM is tailorable and configeradnd it can be
integrated with other software engineering technologikscombines different
artifacts such as requirements, design, code, and pracésse several legacy
systems into reusable common assets. ODM is supported byABA®omain
Architecture-based Generation for Ada Reuse) [KS96]. DARG#ocess does not
cover domain modeling. Thus, it applies ODM or other metHodshis purpose.
Instead, DAGAR process includes activities both for doneaigineering and ap-
plication engineering.

RSEB (Reuse-Driven Software Engineering Business) [J{539F system-
atic, model-driven reuse method. It composes sets of celgpplications from
sets of reusable components. RSEB uses UML (Unified Moddlangguage)
[RIB99] to specify application systems, reusable compisyestiems, and layered
architectures. Variabilities between systems are expdessth variation points
and attached variants. FeatuRSEB (Featured RSEB) [GFd®8lects features
(from FODA) with RSEB. Actually, FODA and RSEB have much imzoon.

39



Both of them are model-driven methods providing several @®dorresponding
the different view points of the domain. Thus, they are catibpawith each other.

PULSE (Product Line Software Engineering) [BE#R] divides product line
life cycle into three parts. In the initialization phase S is customized to fit
the particular application. Adaptation is affected by tlaune of the domain,
the project structure, the organizational context, and¢use aims. In the sec-
ond phase, product-line infrastructure is constructedis $tep includes scop-
ing, modeling, and architecting the product line. In thediphase, the product-
line infrastructure is used to create individual produdisis concerns instantiat-
ing the product-line model and architecture. Each of thésesgs is associated
with product-line infrastructure evolution. Each phasewtl consider chang-
ing requirements and changing concepts within the domai.SE has several
components. PULSE-DSSA (PuLSE - Domain-Specific Softwanehifecture)
[ABFGOOQ], for example, develops a domain specific architextbased on the
product-line model. As other examples, PULSE-Eco cona&gron economic
scoping, and PULSE-EM on evolution and management.

As shown, there exist several process models rather sitoilAST. Accord-
ing to these process models, the process division into doeragineering and
application engineering has proved to be a useful conventi®ecause of the
similarities between the models, accomodating the moéitainal example (pre-
sented in Section 8) to other process models would probablyeby much the
same as adapting it to FAST.

40



References

[ABFGOO]

[ADD *00]

[ADH *00]

[AksO6]

[BDF+99]

[BFG+00]

[CHWOS]

[GFd98]

[Gri00]

Michalis Anastasopoulos, Joachim Bayer, Olivesge, and Christina
Gacek. A process for product line architecture creation evaiua-
tion, PULSE-DSSA-version 2.0. Technical Report IESE-0GHE,
Fraunhofer Institut Experimentelles Software Enginagriddune
2000.

Mark Ardis, Peter Dudak, Liz Dor, Wen-jenq Leu, Lloyd Naéni,
Bob Olsen, and Paul Pontrelli. Domain engineered configuraon-
trol. In Patric Donohoe, editooftware Product Lines, Experience
and Research Directionpages 479-493. Kluwer Academic Publish-
ers, 2000.

Mark Ardis, Nigel Daley, Daniel Hoffman, Harvey Siy, afhvid
Weiss. Software product lines: a case stu@®pftware — Practice
and Experience30(7):825-847, 2000.

Mehmet Aksit. Separation and composition of consan the object-
oriented modelACM Computing Survey28(4es), 1996.

Joachim Bayer, Jean-Marc DeBaud, Oliver Flege, Petaauler,
Roland Laqua, Dirk Muthig, Klaus Schmid, and Tanya Widen.
PUuLSE: A methodology to develop software product linesSympo-
sium on Software Reusability (SSR’9%ages 122-131, May 1999.

John Bergey, Matt Fisher, Brian Gallagher, Lawrenceesprand
Linda Northrop. Basic concepts of product line practicetfa DoD.
Technical Note CMU/SEI-2000-TN-001, Software Enginegiimsti-
tute, Carnegie-Mellon University, 2000.

James Coplien, Daniel Hoffman, and David Weiss. @amality
and variability in software engineerintEEE Software15(6):37-45,
1998.

Martin L. Griss, John Favaro, and Massimo d’Alessanintegrating
feature modeling with the RSEB. Fifth International Conference
on Software Reuse (ICSR’9®pnges 76—85, June 1998.

Martin L. Griss. Implementing product-line feaéis by composing
aspects. In Patric Donohoe, edit@opftware Product Lines, Expe-
rience and Research Directionpages 271-288. Kluwer Academic
Publishers, 2000.

41



[HLO5]

[JGJ97]

[KCH*90]

[KIL +96]

[KKLL99]

[KS96]

[Moi01]

[Myl02]

[PAO1]

[RIBII]

[Scho0]

Walter L. Hirsch and Christina Videira Lopes. Sepianma of con-
cerns. Technical Report NU-CCS-95-03, College of Computer
Science, Northeastern University, Boston, Massachydestsruary
1995.

Ivar Jacobson, Martin Griss, and Patrik JonsSofftware Reuse: Ar-
chitecture, Process and Organization for Business Sucéetdison-
Wesley, 1997.

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E.akov
and A. Spencer Peterson. Feature-oriented domain anéhQI3A)
feasibility study. Technical Report CMU/SEI-90-TR-02-gf®vare
Engineering Institute, Carnegie-Mellon University, Novger 1990.

Gregor Kiczales, John Irwin, John Lamping, Jean-Marmgter,
Cristina Videria Lopes, Chris Maeda, and Anurag Mendhekar.
Aspect-oriented programmingACM Computing Survey28(4es),
1996.

Kyo C. Kang, Sajoong Kim, Jaejoon Lee, and Kwanda=el Feature-
oriented engineering of PBX software for adaptability aedseabil-
ity. Software — Practice and Experien@9(10):875-896, 1999.

Carol Diane Klingler and James Solderitsch. DAGAR:pfo-
cess for domain architecture definition and asset impleatient
In ACM TriAda’'96 ConferenceDecember 1996. Available from:
http://source.asset.com/stars/darpa/Papers/Arch&bapal.

Jussi Moisio. Software platform for mobile termiagin Finnish).
Master’s thesis, Tampere University of Technology, Sofenv8ys-
tems Laboratory, May 2001.

Tommi Myllymaki. Variability management in softwa product
lines. Technical Report 30, Institute of Software Systehasnpere
University of Technology, January 2002.

Rubén Prieto-Diaz and Guillermo Arandg@omain Analysis and Soft-
ware System ModelindEEE Computer Society Press, 1991.

James Rumbaugh, Ivar Jacobson, and Grady Boddte Unified
Modeling Language Reference Manualddison-Wesley, 1999.

Klaus Schmid. Scoping software product lines. Iti€laDonohoe,
editor, Software Product Lines, Experience and Research Diregtion
pages 513-532. Kluwer Academic Publisher, 2000.

42



[SCK*96] Mark Simos, Dick Creps, Carol Klingler, Larry Levine, caibean

[Sof00]

[Wei98]

[WL99]

Allemang. Organization domain modeling (ODM) guideboo&s-v
sion 2.0. Technical Report STARS-VC-A025/001/00, Lockhiar-
tin Tactical Defence Systems, June 1996.

Software Engineering Institute, Carnegie-Melldmiversity. Domain
Engineering: A Model-Based Approacbanuary 2000. Available
from: http://www.sei.cmu.edu/domain-engineering/.

David M. Weiss. Commonality analysis: A systemaiiocess for
defining families. In Frank van der Linden, edit@evelopment
and Evolution of Software Architectures for Product Faeslivol-
ume 1429 ofLecture Notes in Computer Scienqeges 214-222.
Springer, 1998.

David M. Weiss and Chi Tau Robert Lasoftware Product-Line En-
gineering: A Family-Based Software Development Prackdsison-
Wesley, 1999.

43



