
SoftMetaWare

Model-Driven Software
Development Activities

The Process View of an MDSD Project

Author: Jorn Bettin
Version 0.1

May 2004

Copyright © 2003, 2004 SoftMetaWare Ltd.

SoftMetaWare is a trademark of SoftMetaWare Ltd.

All other trademarks are the property of their respective owners.

Page 2 MDSD Activities

1 INTRODUCTION ...2

1.1 NOTATION AND TERMINOLOGY..3

1.2 CHARACTERISTICS OF MODEL-DRIVEN SOFTWARE ...4

2 THE DOMAIN ENGINEERING PROCESS..5

2.1 REFINE PRODUCT PLATFORM DESIGN..6

2.2 REFINE PRODUCT PLATFORM & INFRASTRUCTURE IMPLEMENTATION ..7

2.3 VALIDATE THE ARCHITECTURE USING AN EXAMPLE APPLICATION ...8

2.4 TEMPLATIZE FRAMEWORK COMPLETION CODE ...9

3 THE APPLICATION ENGINEERING PROCESS...10

3.1 APPLICATION DESIGN ..10

3.2 APPLICATION GENERATION..11

3.3 APPLICATION DEVELOPMENT...12

3.4 APPLICATION COMPILATION ..13

4 USING MODEL-DRIVEN SOFTWARE..14

5 TOOL SUPPORT FOR MDSD ..15

6 REFERENCES ..16

1 Introduction

The Model-Driven Software Development (MDSD) [Bettin 2004a] paradigm is
intentionally not prescriptive about most micro-level activities in the software
development process. This enables a model-driven approach to be used in
conjunction with a range of agile techniques, and with one of several methodologies
for software product line engineering. At a macro-level however, the process and
activities in Model-Driven Software Development are quite different from the activities
in traditional iterative software development. Hence this article defines the essential
macro-level software modeling and development activities that are characteristic
of the MDSD paradigm.

Note that this article does not cover "non-development" activities such as domain
analysis, requirements management, software supply chain design, and project
management. A down-to-earth description of the essence of domain analysis is
provided in [Cleaveland 2001], and software supply chain design for MDSD is
described in [Bettin 2004b]. Further topics are covered as patterns in [Bettin 2004a]
and [VB 2004].

Page 3 MDSD Activities

1.1 Notation and Terminology
The best way of describing a high-level view of a process is in diagrammatic form.
Besides UML (Unified Modeling Language) activity diagrams we make use of
somewhat less formal diagrams as appropriate, making use of the following notation:

<specification document> Such as standards definitions,
textual requirements specifications, etc.

<tool> Such as a specification tools, generators, etc.

<formal specification
 in machine readable

format>
Component specifications, source code etc.

<software component> Executable software components.
The optional triangular extensions
symbolise interfaces

Figure 1 Notation - Shapes

We use the following color-coding scheme to differentiate different types of
intellectual property, ranging from strategic proprietary IP to open industry standards.

External, 3rd Party
Infrastructure Such as J2EE, .NET, Oracle, Internet Explorer, etc.

Industry Standards Such as HTTP, SOAP, HTML, XML, etc.

Domain-specific specifications, core application business logic
and associated specifications

Strategic assets, such as a domain-specific product platform,
standard UI components, security framework, etc.

Strategic IP (product
platform & infrastructure)

Strategic IP (applications)

Non-Strategic IP

Generatable
Infrastructure Code

Non-strategic assets, such as legacy code and UI code

Typically infrastructure “glue” code and code to integrate with
domain-specific product platform, legacy code,
and external systems.

Figure 2 Notation - Colors

Page 4 MDSD Activities

1.2 Characteristics of Model-Driven Software
In MDSD we use the term Model-Driven Software to refer to software that is
developed using a model-driven approach and generative techniques, as the quality
attributes (technical consistency, consistency of user interface, maintainability, ...) of
software developed and maintained that way are different from the quality attributes
of "ordinary" software. Model-Driven Software can be constructed using endless
possible combinations of implementation technologies, and leveraging numerous
design patterns in various ways, which is why the term "Model-Driven Architecture®"
that was introduced by the Object Management Group is probably not the best
choice of words.

Generated
Glue Code

External
Infrastructure

Industry
Standards

Industry
Standards

External
Infrastructure

Legacy Core
(Domain-Specific)

External Systems

...

...

...

 Component
Communication

Framework

...

 Domain-specific
Product Platform

Applications
(Business Logic)

Applications
(User Interface)

 Persistence Framework UI Components

Figure 3 Characteristics of Model-Driven Software

In Model-Driven Software Development and in the design of Model-Driven Software
we

 Leverage existing skill sets by capturing domain-specific knowledge (IP) in a
human and machine readable format

 Increase maintainability of code base by insulating strategic IP from
implementation technology churn

 Use automation to achieve organizational agility, reduce software development
costs, and decrease time-to-market

Figure 3 shows that the difference between architecture-centric MDSD and MDSD
with a rich domain-specific product platform (ARCHITECTURE-CENTRIC MDSD pattern
in [Bettin 2004a], [VB 2004]) is small: In architecture-centric MDSD there is no
"domain-specific product platform" and the size of the code base that needs to be
manually maintained is larger − all domain-specific business logic needs to be hand-
crafted, but otherwise the overall picture in terms of leveraging industry standards
and using external infrastructure is unchanged. The development of a domain-
specific product platform is an incremental process once architecture-centric MDSD
is established.

Page 5 MDSD Activities

2 The Domain Engineering Process

The definition of MDSD rest on the foundation of software product line engineering
principles [WL 1999]. This means that an MDSD process can be described in terms
of a Domain Engineering workflow and an Application Engineering workflow. The
steps shown in figure 4 describe the Domain Engineering workflow, which is the
responsibility of a Domain Engineering Team within the software development
organization.

Refine Product Platform
Design

Refine Product Platform &
Infrastructure Implementation

Validate Architecture Using Small
Example Application

Templatise Code from
Example Application

[Updated Specification Tool]

[Generated Code = Example Code]

[Framework Code Unit Tested]

[Example Application Unit Tested]

Figure 4 Domain Engineering workflow

The initial step towards product-line engineering is infrastructure standardization, so
the term Infrastructure Engineering is appropriate until the focus of work shifts to the
domain-specific product platform .

In order to get a good idea of the domain engineering workflow, we need to drill down
to the next level of detail.

Page 6 MDSD Activities

2.1 Refine Product Platform Design
The first step of defining or refining a product platform consists of designing the meta
model of a domain-specific application specification tool - in more technical terms this
is called designing a meta model of a domain-specific language.

Domain Knowledge,
Current Product Platform,

New Technologies

Other non-Functional Product Requirements
(scalability, robustness, recoverability, …)

Current [Legacy] Environment

Need to Manage Complexity
and Improve Maintainability

Meta Modelling
Tool

Meta Model of
Specification Tool

Component Architecture
Specification StandardDomain Analysis Report

Figure 5 Designing the Meta Model of a Domain-Specific
Application Specification Tool

Figure 5 shows example inputs into the meta modeling process. The next step
consists of using a specification tool generator to automatically generate a domain-
specific application specification tool. This may sound esoteric to some software
architects and software developers, but this is a well established process in software
product line engineering, and today there are several industrial-strength Open
Source tools [Eclipse GMT], [GenFW] available that support this process.

Meta Model of
Specification Tool

Specification
Tool Generator

Specification Tool

Figure 6 Automatic Generation of a Specification Tool

Page 7 MDSD Activities

The first version of the generated specification tool may be very basic, but it will be
sufficient for practical validation of the meta model, which is performed simply by
capturing relevant specifications for a concrete application using the generated tool.

Component Specification:
Sample Component 1

Component Specification:
Sample Component 2

Component Specification:
Sample Component 3

•Create Order
•Ship Order
•Get Value (Order)
•…

Specification Tool

Example
Software Requirements

Specifications

Figure 7 Validation of the Generated Specification Tool

The results of the validation may lead to some tailoring of the specification tool
generator, which usually amounts to code changes in a set of code generation
templates, and which contrary to some popular myths and misconceptions about
model-driven approaches (see section Myths about Model-Driven Approaches [Bettin
2004a]) does not consume a significant amount of time and effort.

2.2 Refine Product Platform & Infrastructure Implementation
In Model-Driven Software domain-specific frameworks and the binding to concrete
implementation technologies are part of an application or product platform. The
development of domain-specific meta models and the development of domain-
specific frameworks go hand in hand. The generative approach within the MDSD
paradigm enables automatic generation of framework completion code (sometimes
also called glue code), and thereby represents a large step forward in framework
design. Without the assistance of model-driven generators, framework designers
have to provide extensive documentation to promote correct use of the framework,
and the very nature of frameworks means that users are forced to learn a significant
amount about the internal workings of a framework. MDSD enables framework
designers to enforce correct use of a framework, and shields framework users from
the technical details of a framework that pertain to the solution space rather than the
problem space. Figure 8 shows that the development of domain-specific frameworks
involves integration with relevant industry standards and external infrastructure
implementation. The quality of a domain-specific framework is dependent on the level
of insulation that the framework provides between applications and external
implementation technologies that are subject to technology churn.

Page 8 MDSD Activities

External
Infrastructure

•J2EE, .NET, …
•IE, Netscape, …
•Oracle, SQL server, …
•Windows, Linux, …
•Intel, Motorola, ...

Industry
Standards

•HTTP
•SOAP
•HTML
•XML
•SQL
•LDAP

Framework Specifications

 Component Communication
Framework

for Enterprise Components

 ...

 Domain-specific
Product Platform

Figure 8 Development of Domain-Specific Frameworks

2.3 Validate the Architecture using an Example Application
The development of high-quality domain-specific frameworks does not happen in a
vacuum, but in the context of the experience of building more than one application of
a specific type. Framework functionality is typically extracted out of a working
reference application. The first version of the framework is then tested and validated
by rebuilding the reference application using the newly developed framework.

Industry
Standards

•HTTP
•SOAP
•HTML
•XML
•SQL
•LDAP

External
Infrastructure

•J2EE, .NET, …
•IE, Netscape, …
•Oracle, SQL server, …
•Windows, Linux, …
•Intel, Motorola, ...

Legacy Core
(domain-specific)

External Systems

Minimal
Example

Application
(Business Logic)

Minimal
Example
Application
(User Interface)

Component Architecture
Specification Standard

Component Specification:
Sample Component 1

Component Specification:
Sample Component 2

Component Specification:
Sample Component 3

•Create Order
•Ship Order
•Get Value (Order)
•…

Hand Crafted
Glue Code

Data
Interface

 UI Components

 Component Communication
Framework

for Enterprise Components

 ...

 Domain-specific
Product Platform

Figure 9 Validating the Architecture of Domain-Specific Frameworks

Page 9 MDSD Activities

2.4 Templatize Framework Completion Code
As has already been hinted at, once appropriate domain-specific frameworks are in
existence, the required framework completion code can be extracted from the
reference application, and encapsulated in the form of transformations, which in the
case of a template language based code generator amount to code templates.

Hand Crafted
Glue Code

Data Interface

Template Glue Code

Model Based
Template Interpreter

and Generator

Component Specification:
Sample Component 1

Component Specification:
Sample Component 2

Component Specification:
Sample Component 3

•Create Order
•Ship Order
•Get Value (Order)
•…

Specification Tool
Meta Model

Template Editor

Generated
Glue Code

Data Interface

Figure 10 "templatization" of Framework Completion Code

Building an a product platform, validating the platform using a reference application,
and templatizing framework completion code amounts to the EXTRACT THE
INFRASTRUCTURE pattern [VB 2004], [Bettin 2004a] in MDSD. The next step in the
process is a second round of validating the architecture, by generating the reference
application from an appropriate model to ensure that the code templates accurately
generalize the required framework completion code.
At this point we have:
 Relevant domain-specific meta models and frameworks
 A domain-specific application specification tool
 Transformations or code templates that together with relevant domain-specific

meta models serve as the configuration for a model-driven generator that is
capable of generating the required framework completion code

A last step before large scale deployment of the resulting domain-specific Application
Engineering process usually consists of modeling a test application that is more
broader than the original hand-crafted reference application, in order to provide
additional test coverage for scenarios not covered by the original reference
application.

Page 10 MDSD Activities

3 The Application Engineering Process

In Product-Line Engineering terminology applying the results of Domain Engineering
and automation to build applications constitutes the Application Engineering
workflow, which is the responsibility of the Function Development Teams within a
software development organization. On the highest level the custom-built domain-
specific application engineering process follows the steps shown in figure 11.

Design Application

(Re)Generate glue code

Code business logic and
presentation/UI logic

Compile and Build Application

[Formal component specifications]

[Unit tested application]

[Updated glue code]

[Updated source code]

We highly recommend
automated unit tests ;-)

[Application Compilation/Unit tests fail]

[Application Unit tests fail]

[Glue code compilation/unit tests fail]

Notify Domain Engineering Team

Figure 11 Application Engineering Process

3.1 Application Design
At application design-time the application engineers translate informal software
requirements into formal specifications using the domain-specific application
specification tool(s).

Page 11 MDSD Activities

Component Specification:
AmountOfMoney

Component Specification:
Timesheet

Component Specification:
Order Management

•Create Order
•Ship Order
•Get Value (Order)
•…

Specification Tool

Software
Requirements Specifications

(use cases etc.)

Figure 12 Application Design-Time

3.2 Application Generation
At application generation-time the application engineers use the domain-specific
generators to generate framework completion code. The result is a prototype
application that is functional except for those bits that are application-specific, and
that are not covered by the functionality of the domain-specific framework(s).

Generated Glue Code

Model Based
Template Interpreter

and Generator

 UI Components

 Security Framework

 Transaction Handling

 Internationalization Fwk.

 Component Communication
Framework

for Enterprise Components

 Component Communication
Framework

for Business Components

 Domain-specific
Product Platform

 Persistence Framework

Component Specification:
AmountOfMoney

Component Specification:
Order

Component Specification:
Order Management

•Create Order
•Ship Order
•Get Value (Order)
•…

Template Glue Code

Specification Tool
Meta Model

...
Figure 13 Application Generation-Time

Page 12 MDSD Activities

As more and more applications get built, feedback from application engineers can be
used to increase the expressive power of the domain-specific [modeling] language(s)
used to specify applications, and to leverage commonalities between applications to
further raise the level of abstraction of specification models.

3.3 Application Development
At application development-time the application engineers manually code the
application-specific functionality that is not automatically provided via generation and
the domain-specific framework(s).

IDE
(Visual Studio,

Eclipse, …)

Software
Requirements Specifications

(use cases, UI specs, etc.)

Component Specification:
AmountOfMoney

Component Specification:
Timesheet

Component Specification:
Timekeeping

•Approve Timesheet
•Submit Timesheet
•Get Total Time (Project)
•…

UI Source Code

Business Logic Source Code

Application Developer

Figure 14 Application Development-Time

Page 13 MDSD Activities

3.4 Application Compilation
Manually created application functionality needs to be compiled very much in the
same way as in "traditional" software development. The compilation is typically
controlled by a specific tool component, which depending on the design of the
concrete application engineering process, is invoked either from a standard off-the-
shelf IDE, or from within a domain-specific application specification tool.

IDE
(Visual Studio,

Eclipse, …)

Applications
(Business Logic)

•X
•...

Applications
(User Interface)

•X
•...

UI Source Code

Business Logic Source Code

Application Developer

Figure 15 Application Compile-Time

Page 14 MDSD Activities

4 Using Model-Driven Software

Superficially the user should not notice any difference between model-driven
software and software that is built using traditional software development techniques.
At closer inspection, the user will typically notice a higher degree of consistency in
the application of user interface standards and user-system interaction patterns. In
fact, the relevant standards and interaction patterns can be agreed and validated with
users in advance, when building the reference application.

Generated
Glue Code

External
Infrastructure

•J2EE, .NET, …
•IE, Netscape, …
•Oracle, SQL server, …
•Windows, Linux, …
•Intel, Motorola, ...

Industry
Standards

•HTTP
•SOAP
•HTML
•XML
•SQL
•LDAP

Industry
Standards

•HTTP
•SOAP
•HTML
•XML
•SQL
•LDAP

External
Infrastructure

•J2EE, .NET, …
•IE, Netscape, …
•Oracle, SQL server, …
•Windows, Linux, …
•Intel, Motorola, ...

Legacy Core
(domain-specific)

External Systems

Data
Interface

Workflow
Interface

Security
Interface

 Security Framework

 Transaction Handling

Internationalization
Framework

 Component Communication
Framework

for Enterprise Components

 Component Communication
Framework

for Business Components

 Domain-specific
Product Platform

Applications
(Business Logic)

•X
•Y
•Z
•...

Applications
(User Interface)

•X
•Y
•Z
•...

 Persistence Framework UI Components

Figure 16 Application Run-Time

Figure 16 shows an illustration of a deployed model-driven software system. In terms
of the implementation technologies used not really too different from software built
with a different paradigm, but
 Separation of concerns is very pronounced
 Clean separation of different types of intellectual property in distinct parts of the

code base
 Typically over 50% of the code is automatically generated from domain-specific

models that are much smaller than the generated code
The result is a positive impact on application maintainability and application
development productivity, and by implication on time-to-market.

Page 15 MDSD Activities

5 Tool Support for MDSD

Figure 17 sketches the core tools that are needed to implement MDSD in addition to
the usual set of software development tools.

Model Based
Template Interpreter

and Generator

Meta Modelling
Tool

Specification
Tool Generator

For architectural design, i.e for the
specification of meta models

For the automated generation
of a specification tool
from any meta model

A model based template language that gives access to
the elements of the meta model; and template code
interpreter for text generation (source code, documentation, ...)

Figure 17 Required Tools for MDSD

One example of a tool set that provides components for meta modeling, specification
tool generation, and model-driven, template language based code generation is the
FUUT-je tool which is part of the Generative Model Transformer Open Source MDA
tool component platform [Eclipse GMT].

Page 16 MDSD Activities

6 References

[Bettin 2004a] Jorn Bettin, 2004, Model-Driven Software Development: An emerging
paradigm for industrialized software asset development,
http://www.softmetaware.com/mdsd-and-isad.pdf.

[Bettin 2004b] Jorn Bettin, 2004, Model-Driven Software Development Teams:
Building a Software Supply Chain for Distributed Global Teams,
http://www.softmetaware.com/distributed-software-product-
development.pdf.

[Cleaveland 2001] Craig Cleaveland, 2001, Program Generators with XML and Java,
Prentice Hall

[Eclipse GMT] Generative Model Transformer project, http://www.eclipse.org/gmt/

[GenFW] Sourceforge.net, openArchitectureWare,
http://architecturware.sourceforge.net

[VB 2004] Markus Voelter, Jorn Bettin, 2004, Patterns for Model-Driven
Software Development,
http://www.voelter.de/data/pub/MDDPatterns.pdf

[WL 1999] D. M. Weiss, C.T.R. Lai, 1999, Software Product Line Engineering, A
Family-Based Software Development Process, Addison-Wesley

